Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.698
Filter
1.
Plant Physiol Biochem ; 215: 108971, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094481

ABSTRACT

Climate change effects such as soil salinisation or drought dramatically affect native and potentially invasive plant species. Mimosa pudica, originally native to South America but spread to Africa and Asia, exhibits great adaptability to disturbed environments in tropical and subtropical areas. It has become a model organism for studying thigmomorphogenetic behaviour due to its ability to display fast responses to mechanical stimuli. We investigated the effects of salt and water stresses on M. pudica in interaction with a Mediterranean coastal dune microbial community by growing plants on soils collected from dunes near Valencia, Spain. Plant biomass, potential mechanisms of stress tolerance, seismonastic response, and phenology were assessed. Abiotic stress, particularly salt stress, adversely affects plant performance and seismonasty. Mimosa pudica, however, displayed the blockage of Na+ transport at the root level as a primary defence mechanism against salinity. When exposed to natural soils, plants produced more leaves and flowers, with lower flower abortion rates than plants in a sterile substrate, and the stimulated plants displayed faster responses across time before reaching a plateau, while the recovery increased with time. Our results highlight the need for integrative and multidisciplinary approaches to understand plant-abiotic stress-microorganisms interactions. In M. pudica, soil microorganisms had weak or no effects on biomass or biochemical stress markers; however, their presence strongly improved reproductive traits and seismonasty, thus facilitating potential plant establishment in a new environment.

3.
Ann Bot ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093025

ABSTRACT

BACKGROUND: Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g., flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g., nectar rewards). SCOPE: In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-day greenhouse experiment. KEY RESULTS: We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS: In summary, we show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.

4.
Biodivers Data J ; 12: e127669, 2024.
Article in English | MEDLINE | ID: mdl-39114129

ABSTRACT

The occurrence and distribution of insects and their possible associations with plant species are largely unknown in Germany and baseline data to monitor future trends are urgently needed. Using newly-designed automated Malaise trap multi-samplers, the occurrence of insect species and their potential associations with plants was monitored synchronously at two contrasting field sites in Germany: an urban botanical garden and a forest research station. Taxa were identified by metabarcoding of the insects and the plant traces present in the preservative ethanol of the Malaise trap samples. For comparison, a botanical survey was conducted in the vicinity of the traps. Across both sites, we identified a total of 1290 exact sequence variants (ESVs) assigned to Insecta, of which 205 are known to be pollinators. In the botanical garden, we detected the occurrence of 128 plant taxa, of which 41 also had one of their known insect pollinator species detected. Insect species richness was highest in May, mainly attributed to an increase in Diptera. These results present a case study of the applicability of automated sampling and DNA-based methods to monitor the timings of flowering and corresponding activity of plant-visiting insects.

5.
New Phytol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103987

ABSTRACT

Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.

6.
Ecol Evol ; 14(8): e70154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39130097

ABSTRACT

Climate change and global warming in the Sahelian region cause dramatic drought and advancing of the desert. This phenomenon could affect the plant survival and community composition, but even for surviving plants, it could affect their phenology and the insect community associated with them. In a space-for-time approach, we studied the case of Annona senegalensis Pers. (Annonaceae), a common shrub in tropical areas, to determine the impact of climate change on its phenology and the insects associated with its flowers and fruits. We determined the phenology phases of Annona senegalensis during a 1-year period and assessed the abundance and diversity of insects in the Sudanian and the Sudano-Sahelian climatic zones of Burkina Faso. Temperature, rainfall and relative humidity were recorded during 12 months in two sites per zone. Leafing of Annona senegalensis lasted 10 months in the Sudanian zone, flowering and fruiting were 3 months long. In the Sudano-Sahelian zone, leafing lasted 8 months while flowering and fruiting were 3 and 4 months long, respectively. A total of 10,040 insects belonging to 48 species were collected in the two climatic zones. Forty-six species were found in the Sudanian zone while 25 species were recorded in the Sudano-Sahelian one. The variations in the plant phenology and the insect community were mainly due to the variation in rainfall across both climatic zones. Our results emphasize that advancing of the desert due to climate change could not only affect the survival of plants but for resistant species it also affect their interactions with insects and the whole insect community associated.

7.
PNAS Nexus ; 3(8): pgae297, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39131914

ABSTRACT

Whether and how community structure variation affects plant sexual reproduction is crucial for understanding species' local adaptation and plant community assembly, but remains unrevealed. In Qinghai-Tibetan grassland communities that differed in aboveground biomass (AGB) and species diversity, we found significant influence of AGB on both species' reproductive biomass allocation (RBA) and flowering and fruiting time, but of species diversity only on species' reproductive time. In high-AGB or high-diversity communities, smaller and earlier flowering species generally advanced their reproductive phenology and increased their reproductive allocation for maximizing their reproductive success, whereas larger and later flowering species delayed their reproductive phenology and decreased their reproductive allocation for maximizing their vegetative growth and resource competition. This change in reproductive allocation with the variation in community structures was more pronounced in nonclonal as compared to clonal plant species. Thus, we evidence an important influence of community structure on plant sexual reproduction strategies, and the pattern of the influence depends largely on species biological attributes.

8.
Theor Popul Biol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182695

ABSTRACT

Settlement is a critical transition in the life history of reef fish, and the timing of this event can have a strong effect on fitness. Key factors that influence settlement timing are predictable lunar cyclic variation in tidal currents, moonlight, and nocturnal predation risk as larvae transition from pelagic to benthic environments. However, populations typically display wide variation in the arrival of settlers over the lunar cycle. This variation is often hypothesized to result from unpredictable conditions in the pelagic environment and bet-hedging by spawning adults. Here, we consider the hypothesis that the timing of spawning and settlement is a strategic response to post-settlement competition. We use a game theoretic model to predict spawning and settlement distributions when fish face a tradeoff between minimizing density-independent predation risk while crossing the reef crest vs. avoiding high competitor density on settlement habitat. In general, we expect competition to spread spawning over time such that settlement is distributed around the lunar phase with the lowest predation risk, similar to an ideal free distribution in which competition spreads competitors across space. We examine the effects of overcompensating density dependence, age-dependent competition, and competition among daily settler cohorts. Our model predicts that even in the absence of stochastic variation in the larval environment, competition can result in qualitative divergence between spawning and settlement distributions. Furthermore, we show that if competitive strength increases with settler age, competition results in covariation between settler age and settlement date, with older larvae settling when predation risk is minimal. We predict that competition between daily cohorts delays peak settlement, with priority effects potentially selecting for a multimodal settlement distribution.

9.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39180431

ABSTRACT

Insects live in a wide range of thermal environments and have evolved species- and location-specific physiological processes for survival in hot and cold extremes. Thermally driven dormancy strategies, development rates and thresholds are important for synchronizing cohorts within a population and to local climates and often vary among populations within a species. Mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a widely distributed forest insect native to North America with clinal genetic differentiation in thermally dependent traits. MPB development occurs in Pinus phloem beneath the bark, and its cryptic habitat makes experimentation difficult, particularly for the adult stage. We describe a novel method for modeling MPB adult development following pupation and terminating in emergence from a brood tree. We focus on an Arizona (southern) MPB population with previously described preadult development rates. Field-observed tree attack, adult emergence, and phloem temperature data are combined in a parameterized cohort model and candidate rate curves are evaluated to describe adult emergence timing. Model competition indicates that the Brière rate curve provided the best fit to field data and performed well under cross-validation. Results confirm that the development of Arizona MPB adults is slower than the previously described development rate of more northern Utah adults. Using the estimated adult rate curve in a scenario of increasing mean temperatures, we show that the timing of second-generation adult emergence in the same year would result in cold-intolerant lifestages during winter, limiting the success of bivoltine populations.


Subject(s)
Weevils , Animals , Weevils/growth & development , Weevils/physiology , Arizona , Models, Biological , Pinus/growth & development , Temperature
10.
New Phytol ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152704

ABSTRACT

Two functional responses largely guide woody plants' survival to winter conditions: cold hardiness and dormancy. Dormancy affects budbreak timing based on chill accumulation. Effects of warming on dormancy may appear time-shifted: fall and winter warming events decrease chill accumulation, delaying budbreak observed in spring. The same warming events also affect cold hardiness dynamics, having immediate implications. As cold deacclimation rates increase with dormancy progression, the same amount of warming has greater damage risk the later it occurs in the season, depending on return of low temperatures. Should frequency of erratic weather increase with climate change, more instances of risk are expected. However, understanding how plants fare through seasons now and in future climates still requires better knowledge of winter physiology.

11.
Sci Total Environ ; 951: 175585, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39155002

ABSTRACT

This study explores the integration of crop phenology models and machine learning approaches for predicting rice phenology across China, to gain a deeper understanding of rice phenology prediction. Multiple approaches were used to predict heading and maturity dates at 337 locations across the main rice growing regions of China from 1981 to 2020, including crop phenology model, machine learning and hybrid model that integrate both approaches. Furthermore, an interpretable machine learning (IML) using SHapley Additive exPlanation (SHAP) was employed to elucidate influence of climatic and varietal factors on uncertainty in crop phenology model predictions. Overall, the hybrid model demonstrated a high accuracy in predicting rice phenology, followed by machine learning and crop phenology models. The best hybrid model, based on a serial structure and the eXtreme Gradient Boosting (XGBoost) algorithm, achieved a root mean square error (RMSE) of 4.65 and 5.72 days and coefficient of determination (R2) values of 0.93 and 0.9 for heading and maturity predictions, respectively. SHAP analysis revealed temperature to be the most influential climate variable affecting phenology predictions, particularly under extreme temperature conditions, while rainfall and solar radiation were found to be less influential. The analysis also highlighted the variable importance of climate across different phenological stages, rice cultivation patterns, and geographic regions, underscoring the notable regionality. The study proposed that a hybrid model using an IML approach would not only improve the accuracy of prediction but also offer a robust framework for leveraging data-driven in crop modeling, providing a valuable tool for refining and advancing the modeling process in rice.

12.
J Exp Bot ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190403

ABSTRACT

In studies of plant spring phenology, temperature sum models are traditional tools. They are used to quantify plant development in terms of accumulation of temperature-dependent developmental units, such as Growing Degree Hours, GDHs. A key parameter in these models is the threshold (or base) temperature, Tthr, representing the lower thermal limit for the development to occur. The parameter can be either estimated when the model is fitted into the data or fixed a priori. Here we examine the limitations of both methods and identify fields of applications for each of them.

13.
Ecology ; : e4402, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39161201

ABSTRACT

The seasonal timing and magnitude of photosynthesis in evergreen needleleaf forests (ENFs) has major implications for the carbon cycle and is increasingly sensitive to changing climate. Earlier spring photosynthesis can increase carbon uptake over the growing season or cause early water reserve depletion that leads to premature cessation and increased carbon loss. Determining the start and the end of the growing season in ENFs is challenging due to a lack of field measurements and difficulty in interpreting satellite data, which are impacted by snow and cloud cover, and the pervasive "greenness" of these systems. We combine continuous needle-scale chlorophyll fluorescence measurements with tower-based remote sensing and gross primary productivity (GPP) estimates at three ENF sites across a latitudinal gradient (Colorado, Saskatchewan, Alaska) to link physiological changes with remote sensing signals during transition seasons. We derive a theoretical framework for observations of solar-induced chlorophyll fluorescence (SIF) and solar intensity-normalized SIF (SIFrelative) under snow-covered conditions, and show decreased sensitivity compared with reflectance data (~20% reduction in measured SIF vs. ~60% reduction in near-infrared vegetation index [NIRv] under 50% snow cover). Needle-scale fluorescence and photochemistry strongly correlated (r2 = 0.74 in Colorado, 0.70 in Alaska) and showed good agreement on the timing and magnitude of seasonal transitions. We demonstrate that this can be scaled to the site level with tower-based estimates of LUEP and SIFrelative which were well correlated across all sites (r2 = 0.70 in Colorado, 0.53 in Saskatchewan, 0.49 in Alaska). These independent, temporally continuous datasets confirm an increase in physiological activity prior to snowmelt across all three evergreen forests. This suggests that data-driven and process-based carbon cycle models which assume negligible physiological activity prior to snowmelt are inherently flawed, and underscores the utility of SIF data for tracking phenological events. Our research probes the spectral biology of evergreen forests and highlights spectral methods that can be applied in other ecosystems.

14.
Sci Total Environ ; 949: 175181, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094660

ABSTRACT

The impacts of various drought types on autumn phenology have yet to be extensively explored. We address the influence of pre-season agricultural and meteorological droughts on autumn phenology in the Northern Hemisphere. To this end, enhanced autumn phenology models incorporating drought factors was developed, contributing to a deeper understanding of these complex interactions. The study reveals that there was no significant trend of advancement or delay in the End of Season (EOS) across the Northern Hemisphere based on SIF estimates from 2001 to 2020. The cumulative and delayed impacts of pre-season agricultural drought on EOS were found to be more pronounced than those associated with meteorological drought. The analysis of various evaluation indexes shows that the performance of the Cooling Degree Days (CDD) model incorporating the Standardized Soil Moisture Drought Index (CDDSSMI) in simulating EOS in the Northern Hemisphere is >14 % higher than that of the standard CDD model. Additionally, the performance of the CDD model with the Standardized Precipitation Index (CDDSPI) in simulating EOS in the Northern Hemisphere is improved by >5.6 % compared to the standard CDD model. A comparison of future EOS projections across various models reveals that the CDD model significantly overestimates EOS in different scenarios (SSP245 and SSP585). The CDDSSMI model projects EOS approximately 7 days earlier than the CDD model, and the CDDSPI model projects EOS approximately 5 days earlier than the CDD model. This study highlights the diverse impacts of drought types on plant autumn phenology and underscores the significance of parameterizing drought impacts in autumn phenology models.


Subject(s)
Agriculture , Droughts , Seasons , Agriculture/methods , Models, Theoretical , Climate Change , Environmental Monitoring/methods
15.
Sci Rep ; 14(1): 19436, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169107

ABSTRACT

As reproduction phenologies shift with climate change, populations can experience intraspecific priority effects, wherein early hatching cohorts experience an advantage over late-hatching cohorts, resulting in altered demography. Our study objective was to identify how variation in egg hatching phenology alters intraspecific interactions in small-mouthed salamanders, Ambystoma texanum. We addressed two research questions: (Q1) How are demographic responses altered by variation in the temporal duration of hatching between cohorts, and (Q2) How does the seasonality of hatching delays affect demographic responses? We manipulated hatching phenologies of A. texanum eggs and reared larvae in outdoor mesocosms to metamorphosis. For Q1, hatching delay exhibited non-linear relationships with survival and body size, with the greatest asynchrony in cohort additions resulting in the highest mortality and largest body sizes. For Q2, hatching delay effects were stronger (i.e., survival was lower and body sizes larger) when they occurred later in the season, potentially due to temperature differences that larvae experienced. Overall, our results demonstrate that changes in intraspecific interactions due to phenological shifts can be context-dependent, depending on the strength (i.e., temporal duration) and seasonality of such processes. Identifying context-dependencies of phenological shifts will be critical for predicting changes in organismal demographics with climatic shifts.


Subject(s)
Larva , Metamorphosis, Biological , Reproduction , Animals , Larva/physiology , Larva/growth & development , Reproduction/physiology , Metamorphosis, Biological/physiology , Ponds , Climate Change , Seasons , Body Size , Ambystoma/physiology , Ovum/physiology , Temperature , Breeding
16.
Ann Bot ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066503

ABSTRACT

BACKGROUND AND AIMS: As winter and spring temperatures continue to increase, the timing of flowering and leaf out is advancing in many seasonally cold regions. This advancement could put plants that flower early in the spring at risk of decreased reproduction in years when there are late freeze events. Unfortunately, relatively little is known about floral freezing tolerance in forest communities. In this study, we examined the impact of freezing temperatures on the flowers of woody plants in a region where there is rapid winter warming in North America. METHODS: We subjected the flowers of twenty-five woody species to a hard (-5ºC) and a light freeze (0ºC). We assessed tissue damage using electrolyte leakage. In a subset of species, we also examined the impact of a hard freeze on pollen tube growth. To determine if the vulnerability of flowers to freezing damage relates to flowering time and to examine the responsiveness of flowering time to spring temperature, we recorded the date of first flower for our study species for three years. KEY RESULTS AND CONCLUSIONS: Across species, we found that floral freezing tolerance was strongly tied to flowering time with the highest freezing tolerance occurring in plants that bloomed earlier in the year. We hypothesize that these early blooming species are unlikely to be impacted by a false spring. Instead, the most vulnerable species to a false spring should be those that bloom later in the season. The flowering time in these species is also more sensitive to temperature, putting them at a great risk of experiencing a false spring. Ultimately, floral damage in one year will not have a large impact on species fitness, but if false springs become more frequent, there could be long-term impacts on reproduction of vulnerable species.

17.
Ann Bot ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39084677

ABSTRACT

BACKGROUND AND AIMS: The impact of urbanization on plant evolution, particularly the evolution of reproductive traits, remains largely unknown. In this study, we aimed to investigate the consequences of urbanization on the reproductive traits of Portulaca oleracea in the Kanto region of Japan. Portulaca oleracea has a unique cleistogamous reproductive system, which consists of genetically determined chasmogamous (open, CH) and cleistogamous (closed, CL) plants. METHODS: We collected seeds of P. oleracea from ten populations in rural areas and ten populations in urban areas. In a common garden experiment, we recorded the type of flowers (CH or CL), reproductive phenology and seed production. KEY RESULTS: All individuals produced either CH or CL flowers, allowing us to classify them as either CH or CL plants. We observed a significant difference in the prevalence of CH and CL plants between rural and urban populations: the number of CH plants was generally low and was particularly low among urban individuals. Compared to CH plants, CL plants showed earlier phenology and produced heavier seeds, which is consistent with stress avoidance in response to heat and drought stress conditions in urban areas. CONCLUSIONS: Our findings suggest that urbanization may drive an evolutionary change in the cleistogamous reproductive system of P. oleracea. CL plants with earlier phenology and larger seeds might be better adapted to urban environments, where they are subjected to harsh heat and drought stress.

18.
Ann Bot ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052309

ABSTRACT

BACKGROUND AND AIMS: Spring phenological change of plants in response to global warming may affect many ecological processes and functions. Chilling temperature regulates budburst date by releasing dormancy. However, whether freezing temperature (<0°C) contributes to dormancy release is still debated. Our poor understanding of the role of chilling makes estimating shifts in budburst date difficult. METHODS: A two-year chilling-forcing experiment was explicitly designed to test the effects of chilling temperatures on dormancy release of 9 temperate woody species in Beijing, China. A total of 1620 twigs were first exposed to a wide range of temperatures (-10 to 10 °C) with different durations and then moved to growth chambers. Based on budburst data in experimental conditions, we examined whether freezing temperatures are effective on dormancy release. We also developed a new framework for constructing chilling functions based on the curve between chilling duration and forcing requirement (FR) of budburst. The chilling function derived from this framework was not affected by experimental forcing conditions. KEY RESULTS: We demonstrated that freezing temperatures down to -10°C were effective in dormancy release. The rate of dormancy release, indicated by the rate of decay in chilling duration-FR curve, did not differ significantly between chilling temperatures in most cases, although it exhibited a maximum value at 0 or 5°C. The chilling function-associated phenological models could simulate budburst date from independent experimental and observational data with a mean RMSE of 7.07 days. CONCLUSIONS: The effective freezing temperatures found here are contrary to the well-known assumption of <0°C temperature generally not contributing to accumulated chilling in many previous chilling functions. A chilling function assuming that temperature below an upper-temperature threshold has the same effects on dormancy release could be adopted to calculate chilling accumulation when using experiments to develop spring phenological models based on the chilling-forcing relationship.

19.
Ann Bot ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052329

ABSTRACT

BACKGROUND AND AIMS: Pit pairs and their filter-like partition, i.e. pit membranes, play important roles as water pathways, barriers and regulators in the water-conducting system of angiosperms. In Fraxinus species, the intervessel and vessel-parenchyma pit membranes in sapwood are normally encrusted during winter. Although these encrustations inevitably influence the performance of pits, their properties and functions remain unclear. This study aimed to reveal the morphological and chemical characteristics of encrustations in F. mandshurica in order to deepen understanding of the seasonal encrustation of pit membranes. METHODS: Seasonal and positional variations in the presence and morphology of encrustations were examined by field-emission scanning electron microscopy (FE-SEM). Cryo-FE-SEM for freeze-fixed greenwood samples was conducted to clarify whether encrustations were present in living trees. Chemical components were examined by histochemical staining using light and electron microscopies, immunofluorescence labelling and ultraviolet microspectroscopy. KEY RESULTS: Encrustations began to deposit in fall before leaf senescence and disappeared in spring before bud flushing. They infiltrated within the pit membranes, which suggested that they severely limit the permeation of pits. The encrustations differed in morphology among positions: they entirely filled the pit chambers in latewood, while they covered the pit membranes in earlywood. The encrustations were similarly observed in the samples that were freeze-fixed immediately after collection, indicating that they are present in living trees. The encrustations contained polysaccharides, including xyloglucan and homogalacturonan, and phenolic compounds, possibly including flavonoids and coumarins. These chemical components were also detected in droplets found in the latewood vessels with the encrustations, suggesting that the materials constituting encrustations were supplied through the vessel lumens. CONCLUSIONS: Encrustations undoubtedly cover the pit membranes in living F. mandshurica trees in winter and their morphology and chemical composition indicate that they are impermeable, have positional differences in function and are characterised by elaborate deposition/removal processes.

20.
Environ Entomol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052937

ABSTRACT

Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.

SELECTION OF CITATIONS
SEARCH DETAIL