Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
Chem Biol Interact ; 402: 111217, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39197813

ABSTRACT

Snake venoms are a complex mixture of proteins and polypeptides that represent a valuable source of potential molecular tools for understanding physiological processes for the development of new drugs. In this study two major PLA2s, named PLA2-I (Asp49) and PLA2-II (Lys49), isolated from the venom of Bothrops diporus from Northeastern Argentina, have shown cytotoxic effects on LM3 murine mammary tumor cells, with PLA2-II-like exhibiting a stronger effect compared to PLA2-I. At sub-cytotoxic levels, both PLA2s inhibited adhesion, migration, and invasion of these adenocarcinoma cells. Moreover, these toxins hindered tubulogenesis in endothelial cells, implicating a potential role in inhibiting tumor angiogenesis. All these inhibitory effects were more pronounced for the catalytically-inactive toxin. Additionally, in silico studies strongly suggest that this PLA2-II-like myotoxin could effectively block fibronectin binding to the integrin receptor, offering a dual advantage over PLA2-I in interacting with the αVß3 integrin. In conclusion, this study reports for the first time, integrating both in vitro and in silico approaches, a comparative analysis of the antimetastatic and antiangiogenic potential effects of two isoforms, an Asp49 PLA2-I and a Lys49 PLA2-II-like, both isolated from Bothrops diporus venom.


Subject(s)
Bothrops , Crotalid Venoms , Phospholipases A2 , Animals , Bothrops/metabolism , Mice , Phospholipases A2/metabolism , Phospholipases A2/chemistry , Phospholipases A2/pharmacology , Cell Line, Tumor , Crotalid Venoms/chemistry , Cell Movement/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Cell Adhesion/drug effects , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/cytology , Neoplasm Metastasis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Fibronectins/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Humans , Lysine/chemistry , Lysine/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Angiogenesis
2.
Urologia ; 91(4): 720-726, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39051490

ABSTRACT

BACKGROUND: Phospholipase A2 (PLA2) is a large family of enzymes involved in the inflammatory process that catalyzes the hydrolysis of membrane phospholipids, leading to the production of free fatty acids and lysophospholipids, starting the arachidonic acid cascade. Their expression has been related to the behavior of several cancers. Our objective is to search for PLA2 expression in prostate cancer (PCa) tissue that correlates with prognosis and survival. METHODS: Using qRT-PCR, we analyzed the expression levels of PLA2G1B, PLA2G2A, PLA2G2D, PLA2G4A, PLA2G4B, PLA2G4C, PLA2G4D, PLA2G4E, PLA2G4F, PLA2G6, PLA2G7, PLA2G16, PNPLA1, and PNPLA2 in PCa tissue from 108 patients submitted to radical prostatectomy, followed by a mean time of 163 months. RESULTS: All PLA2 was overexpressed in PCa compared to normal tissue. Interestingly, higher expression of some PLA2 was related to favorable prognostic factors: lower levels of PSA (PLA2G2A, PLA2G4D), lower rates of lymph node metastasis (PLA2G16 and PLA2G1B), and organ-confined disease (PLA2G4A). Most importantly, PLAG4B was independently related to longer disease-free survival. CONCLUSION: This is the first study exploring comprehensively the expression levels of PLA2 in PCa, showing that the higher expression of some PLA2 should be used as biomarkers of good prognosis and longer disease-free survival.


Subject(s)
Biomarkers, Tumor , Phospholipases A2 , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prognosis , Biomarkers, Tumor/metabolism , Aged , Phospholipases A2/genetics , Middle Aged , Follow-Up Studies , Time Factors , Survival Rate
3.
Acta Trop ; 257: 107281, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852917

ABSTRACT

Phospholipases A2 (PLA2) comprise a superfamily of enzymes that specifically catalyze hydrolysis of the ester bond at the sn-2 position of glycerophospholipids, generating lysophospholipids and fatty acids. In Rhodnius prolixus, one of the main vectors of the Chagas's disease etiologic agent Trypanosoma cruzi, it was previously shown that lysophosphatidylcholine, a bioactive lipid, found in the insect's saliva, contributes to the inhibition of platelet aggregation, and increases the production of nitric oxide, an important vasodilator. Due to its role in potentially generating LPC, here we studied the PLA2 present in the salivary glands of R. prolixus. PLA2 activity is approximately 100 times greater in the epithelium than in the contents of salivary glands. Our study reveals the role of the RpPLA2XIIA gene in the insect feeding performance and in the fatty acids composition of phospholipids extracted from the salivary glands. Knockdown of RpPLA2XIIA significantly altered the relative amounts of palmitic, palmitoleic, oleic and linoleic acids. A short-term decrease in the expression of RpPLA2III and RpPLA2XIIA in the salivary glands of R. prolixus was evident on the third day after infection by T. cruzi. Taken together, our results contribute to the understanding of the role of PLA2 in the salivary glands of hematophagous insects and show that the parasite is capable of modulating even tissues that are not colonized by it.


Subject(s)
Phospholipases A2 , Rhodnius , Salivary Glands , Trypanosoma cruzi , Animals , Rhodnius/parasitology , Rhodnius/enzymology , Rhodnius/genetics , Salivary Glands/parasitology , Salivary Glands/enzymology , Salivary Glands/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/enzymology , Phospholipases A2/metabolism , Phospholipases A2/genetics , Fatty Acids/metabolism , Chagas Disease/parasitology , Insect Vectors/parasitology , Insect Vectors/enzymology
4.
Biochimie ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944106

ABSTRACT

The Loxosceles genus represents one of the main arachnid genera of medical importance in Brazil. Despite the gravity of Loxosceles-related accidents, just a handful of species are deemed medically important and only a few have undergone comprehensive venom characterization. Loxosceles amazonica is a notable example of a potentially dangerous yet understudied Loxosceles species. While there have been limited reports of accidents involving L. amazonica to date, accidents related to Loxosceles are increasing in the North and Northeast regions of Brazil, where L. amazonica has been reported. In this work, we provide a complementary biochemical and immunological characterization of L. amazonica venom, considering its most relevant enzymatic activities and its immunorecognition and neutralization by current therapeutic antivenoms. Additionally, a cDNA library enriched with phospholipase D (PLD) sequences from L. amazonica venom glands was built and subsequently sequenced. The results showed that L. amazonica venom is well immunorecognised by all the tested antibodies. Its venom also displayed proteolytic, hyaluronidase, and sphingomyelinase activities. These activities were at least partially inhibited by available antivenoms. With cDNA sequencing of PLDs, seven new putative isoforms were identified in the venom of L. amazonica. These results contribute to a better knowledge of the venom content and activities of a synanthropic, yet understudied, Loxosceles species. In vivo assays are essential to confirm the medical relevance of L. amazonica, as well as to assess its true toxic potential and elucidate its related pathophysiology.

5.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928125

ABSTRACT

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Subject(s)
Adipose Tissue , Fatty Liver , Leptin , Liver , Omentum , Humans , Leptin/metabolism , Female , Male , Liver/metabolism , Middle Aged , Omentum/metabolism , Omentum/pathology , Adipose Tissue/metabolism , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Insulin Resistance , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
6.
Adv Biol Regul ; 92: 101033, 2024 05.
Article in English | MEDLINE | ID: mdl-38739986

ABSTRACT

Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.


Subject(s)
Calcium Signaling , Cell Nucleus , Receptor Protein-Tyrosine Kinases , Humans , Cell Nucleus/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Animals , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism
7.
Rev Alerg Mex ; 71(1): 47-51, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683069

ABSTRACT

BACKGROUND: Loxoscelism is a toxic clinical condition caused by the bite of spiders of the genus Loxosceles, with wide distribution throughout the world.1 Phospholipase D is responsible for dermonecrosis, inflammation, platelet aggregation, hemolysis, alteration of vascular permeability, cytotoxicity, nephrotoxicity, acute renal failure, among other symptoms involved with this protein. CASE REPORT: 27-year-old male patient, who began with a sudden episode of intense pain in the right hand, in the metacarpus and metacarpophalangeal joints. On clinical examination, the upper extremity was noted to have increased volume, extensive edema, hyperemia, and increased local temperature; The lesion progressed to extensive necrosis. Fasciotomies were performed, from distal to proximal, and release of the second and third finger compartment through longitudinal radial and ulnar incisions. A skin autograft was placed, obtained from the anterior surface of the right thigh. Opioid analgesics, non-steroidal anti-inflammatory drugs, corticosteroids, and antibiotics were administered. The skin biopsy reported: inflammatory infiltrate with neutrophils, ulceration, and bacterial colonies. After 27 days he had a favorable evolution, so he was discharged to his home, with follow-up by staff from the Outpatient Service. CONCLUSION: Cutaneous loxoscelism, as a cause of acute compartment syndrome of the hand, is rare, but should be considered in an area endemic for Loxosceles spp. Surgical decompression of the affected compartments represents a decisive factor in the treatment of patients.


ANTECEDENTES: El loxoscelismo es un cuadro clínico tóxico provocado por la mordedura de arañas del género Loxosceles, con amplia distribución en todo el mundo.1 La fosfolipasa D es la responsable de la dermonecrosis, inflamación, agregación plaquetaria, hemólisis, alteración de la permeabilidad vascular, citotoxicidad, nefrotoxicidad, insuficiencia renal aguda, entre otros síntomas implicados con esta proteína. REPORTE DE CASO: Paciente masculino de 27 años, que inició con un cuadro repentino de dolor intenso en la mano derecha, en el metacarpo y las articulaciones metacarpofalángicas. Al examen clínico, la extremidad superior se percibió con aumento de volumen, edema extenso, hiperemia y aumento de la temperatura local; la lesión progresó a necrosis extensa. Se realizaron fasciotomías, de distal a proximal, y liberación del compartimento del segundo y tercer dedo a través de incisiones longitudinales radiales y cubitales. Se colocó un autoinjerto de piel, obtenido de la superficie anterior del muslo derecho. Se administraron analgésicos opioides, antiinflamatorios no esteroides, corticosteroides y antibióticos. La biopsia de piel reporto: infiltrado inflamatorio con neutrófilos, ulceración y colonias bacterianas. Luego de 27 días tuvo evolución favorable, por lo que se dio alta a su domicilio, con seguimiento por personal del servicio de Consulta externa. CONCLUSIÓN: El loxoscelismo cutáneo, como causa de síndrome compartimental agudo de la mano, es poco común, pero debe considerarse en un área endémica para Loxosceles spp. La descompresión quirúrgica de los compartimentos afectados representa un factor decisivo en el tratamiento de los pacientes.


Subject(s)
Spider Bites , Humans , Male , Adult , Spider Bites/complications , Acute Disease , Compartment Syndromes/etiology
8.
Toxicon ; 242: 107711, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38583578

ABSTRACT

Crotalus neutralizing factor (CNF) is an endogenous glycoprotein from Crotalus durissus terrificus snake blood that inhibits secretory phospholipases A2 (sPLA2) from the Viperid but not from Elapid venoms (subgroups IA and IIA, respectively). In the present study, we demonstrated that CNF can inhibit group III-PLA2 from bee venom by forming a stable enzyme-inhibitor complex. This finding opens up new possibilities for the potential use of CNF and/or CNF-based derivatives in the therapeutics of bee stings.


Subject(s)
Bee Venoms , Crotalus , Venomous Snakes , Animals , Bee Venoms/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Crotalid Venoms/antagonists & inhibitors , Bees , Phospholipases A2 , Glycoproteins/pharmacology , Phospholipases A2, Secretory/antagonists & inhibitors
9.
Article in English | MEDLINE | ID: mdl-38505508

ABSTRACT

Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.

10.
Article in English | MEDLINE | ID: mdl-38317796

ABSTRACT

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.

11.
Braz. j. med. biol. res ; 57: e13218, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534063

ABSTRACT

High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.

12.
Biochimie ; 218: 46-56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37659716

ABSTRACT

In accidents involving Crotalus snakes, the crotoxin complex (CTX) plays lethal action due to its neurotoxic activity. On the other hand, CTX have potential biotechnological application due to its anti-tumoral, anti-inflammatory, antimicrobial, analgesic and immunomodulatory properties. CTX is a heterodimer composed of Crotoxin A (CA or crotapotin), the acidic nontoxic and non-enzymatic component and; Crotoxin B (CB), a basic, toxic and catalytic PLA2. Currently, there are two classes of CTX isoforms, whose differences in their biological activities have been attributed to features presented in CB isoforms. Here, we present the crystal structure of CB isolated from the Crotalus durissus collilineatus venom. It amino acid sequence was assigned using the SEQUENCE SLIDER software, which revealed that the crystal structure is a heterodimer composed of two new CB isoforms (colCB-A and colCB-B). Bioinformatic and biophysical analyses showed that the toxin forms a tetrameric assembly in solution similar to CB from Crotalus durissus terrificus venom, despite some differences observed at the dimeric interface. By the previously proposed classification, the colCB-B presents features of the class I isoforms while colCB-A cannot be classified into classes I and II based on its amino acid sequence. Due to similar features observed for other CB isoforms found in the NCBI database and the results obtained for colCB-A, we suggest that there are more than two classes of CTX and CB isoforms in crotalic venoms.


Subject(s)
Crotalid Venoms , Crotoxin , Venomous Snakes , Animals , Crotoxin/chemistry , Phospholipases A2/chemistry , Crotalus/metabolism , Crotalid Venoms/chemistry , Protein Isoforms/metabolism
13.
FEBS J ; 291(4): 722-743, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947039

ABSTRACT

Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.


Subject(s)
PPAR gamma , Prostaglandins , Animals , Dogs , PPAR gamma/genetics , Arachidonic Acid/metabolism , Rosiglitazone , Osmotic Pressure , Phospholipases A2 , Indomethacin , Homeostasis , Glycerophospholipids , Triglycerides
14.
Plant Physiol Biochem ; 206: 108208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039584

ABSTRACT

Previous findings have shown that phospholipase D (PLD) contributes to the response to long-term chilling stress in barley by regulating the balance of proline (Pro) levels. Although Pro accumulation is one of the most prominent changes in barley roots exposed to this kind of stress, the regulation of its metabolism during recovery from stress remains unclear. Research has mostly focused on the responses to stress per se, and not much is known about the dynamics and mechanisms underlying the subsequent recovery. The present study aimed to evaluate how PLD, its product phosphatidic acid (PA), and diacylglycerol pyrophosphate (DGPP) modulate Pro accumulation in barley during recovery from long-term chilling stress. Pro metabolism involves different pathways and enzymes. The rate-limiting step is mediated by pyrroline-5-carboxylate synthetase (P5CS) in its biosynthesis, and by proline dehydrogenase (ProDH) in its catabolism. We observed that Pro levels decreased in recovering barley roots due to an increase in ProDH activity. The addition of 1-butanol, a PLD inhibitor, reverted this effect and altered the relative gene expression of ProDH. When barley tissues were treated with PA before recovery, the fresh weight of roots increased and ProDH activity was stimulated. These data contribute to our understanding of how acidic membrane phospholipids like PA help to control Pro degradation during recovery from stress.


Subject(s)
Hordeum , Hordeum/metabolism , Cold-Shock Response , Signal Transduction , Proline Oxidase/metabolism , Phosphatidic Acids/metabolism , Proline/metabolism
15.
Toxicon ; 237: 107528, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013057

ABSTRACT

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Subject(s)
Crotalinae , Viperidae , Animals , Mice , Viperidae/metabolism , Tandem Mass Spectrometry , Phospholipases A2/chemistry , Viper Venoms/toxicity , Edema/chemically induced
16.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140988, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38142025

ABSTRACT

Snakebite is a significant health concern in tropical and subtropical regions, particularly in Africa, Asia, and Latin America, resulting in more than 2.7 million envenomations and an estimated one hundred thousand fatalities annually. The Bothrops genus is responsible for the majority of snakebite envenomings in Latin America and Caribbean countries. Accidents involving snakes from this genus are characterized by local symptoms that often lead to permanent sequelae and death. However, specific antivenoms exhibit limited effectiveness in inhibiting local tissue damage. Phospholipase A2-like (PLA2-like) toxins emerge as significant contributors to local myotoxicity in accidents involving Bothrops species. As a result, they represent a crucial target for prospective treatments. Some natural and synthetic compounds have shown the ability to reduce or abolish the myotoxic effects of PLA2-like proteins. In this study, we employed a combination approach involving myographic, morphological, biophysical and bioinformatic techniques to investigate the interaction between chlorogenic acid (CGA) and BthTX-I, a PLA2-like toxin. CGA provided a protection of 71.8% on muscle damage in a pre-incubation treatment. Microscale thermophoresis and circular dichroism experiments revealed that CGA interacted with the BthTX-I while preserving its secondary structure. CGA exhibited an affinity to the toxin that ranks among the highest observed for a natural compound. Bioinformatics simulations indicated that CGA inhibitor binds to the toxin's hydrophobic channel in a manner similar to other phenolic compounds previously investigated. These findings suggest that CGA interferes with the allosteric transition of the non-activated toxin, and the stability of the dimeric assembly of its activated state.


Subject(s)
Chlorogenic Acid , Cinnamates , Chlorogenic Acid/pharmacology , Phospholipases A2/chemistry , Phospholipases A2/metabolism , Phospholipases A2/toxicity
17.
São Paulo; 2024. 45 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5346

ABSTRACT

Snakebites are an important Public Health issue, so much so that they are classified as Neglected Tropical Diseases (NTDs) in category A, by the World Health Organization (WHO). The biggest victims are young people, mainly rural workers, who often, due to temporary or even permanent disability, end up affecting not only their family, but their entire community. Annually in Brazil, 90% of reported cases are caused by the Bothrops genus. Bothrops jararacussu is probably one of the most fearsome and imposing of this genus. Its bite is painful, and the main local effect is myonecrosis, which can result in deficient muscle regeneration. Its venom is mainly composed of phospholipases A2, which is why it has an important myotoxic effect. These phospholipases are myotoxic components that directly destabilize the plasma membrane of muscle cells, causing the influx of calcium ions and so hypercontraction and the early appearance of cells with delta lesions. Understanding the pathogenesis of poisoning is of fundamental importance for studies of better therapies.


O ofidismo é uma questão importante de Saúde Pública, tanto que está classificado como Doenças Tropicais Negligenciadas (DTN) na categoria A, pela Organização Mundial da Saúde (OMS). As maiores vítimas são jovens, principalmente trabalhadores rurais, que muitas vezes pela incapacidade temporária ou até permanente, acabam afetando não só sua família, mas toda a sua comunidade. Anualmente no Brasil, 90% dos casos notificados são causados pelo gênero Bothrops. A Bothrops jararacussu é provavelmente uma das mais temíveis e imponentes deste gênero. Sua picada é dolorosa e como principal efeito local temos a mionecrose, que pode ter como sequela uma regeneração muscular deficiente. Seu veneno é composto principalmente por fosfolipases A2, o motivo de ter um efeito miotóxico importante. Essas fosfolipases são componentes miotóxicos que desestabilizam diretamente a membrana plasmática das células musculares, causando o influxo de íons cálcio e consequentemente uma hipercontração e o aparecimento precoce de células com lesões delta. A compreensão da patogênese dos envenenamentos é de fundamental importância para estudos de melhores terapias.

18.
Plant Sci ; 340: 111971, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160760

ABSTRACT

Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/microbiology , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/metabolism , Phosphatidylinositols , Cell Proliferation , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Oxylipins/metabolism , Cyclopentanes/metabolism
19.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20230046, 2024. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1528980

ABSTRACT

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.


Subject(s)
Animals , Scorpion Venoms/analysis , Scorpion Venoms/chemistry , Peptide Hydrolases , Phospholipases , Glycoproteins , Hyaluronoglucosaminidase
20.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20230063, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1550522

ABSTRACT

Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.


Subject(s)
Scorpion Venoms/enzymology , Scorpion Venoms/toxicity , Colombia
SELECTION OF CITATIONS
SEARCH DETAIL