Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biomater Adv ; 154: 213645, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806213

ABSTRACT

Cardiovascular stenting is the most widely used therapy to treat coronary artery disease caused by partial or total obstruction of the artery due to atherosclerotic plaque formation, with potentially fatal effects. There are different types of stents: bare metal stents, drug-eluting stents, bioabsorbable stents and dual therapy stents. However, they can lead to long-term complications, such as in-stent restenosis and late thrombosis. To reduce these adverse effects, research has focused on biodegradable metallic stents, since they retain the mechanical properties necessary to contain the injured artery while it is being repaired and, once their function has been fulfilled, the stent degrades without altering the system or compromising the patient's health. In this work we have evaluated the biological response of the degradation products of a bare Mg based biomaterial surface-modified by the plasma electrolytic oxidation (PEO) method on vascular tissue cells, hemocompatibility and inflammatory response. The results obtained are compatible with a biosafe material for future use as a cardiovascular implant, but it is necessary to continue with in vivo and mechanical properties tests to ensure and guarantee its use. SIGNIFICANCE STATEMENT: The development of fully bioresorbable stents is a promising alternative for the management of coronary artery disease without causing long-term problems at the implantation site. In this work, the hematological and immunological biocompatibility of bare Mg modified superficially by plasma electrolytic oxidation (PEO-Mg) was evaluated by in vitro and ex vivo assays. PEO-Mg was found to be compatible with blood and immune components surrounding the implantation site with no signs of toxicity to endothelial cells, macrophages, and arterial tissue. In addition, degradation products of PEO-Mg are eliminated by phagocytosis. However, an in-depth study of the physical and mechanical properties and in vivo biocompatibility must be carried out for its future use as a biomedical implant.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Humans , Magnesium , Coronary Artery Disease/therapy , Endothelial Cells , Drug-Eluting Stents/adverse effects , Stents/adverse effects
2.
Heliyon ; 9(9): e19289, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674849

ABSTRACT

This study investigates and compares plasma electrolytic oxidation (PEO) coatings produced on wrought Ti6Al4V alloy substrates with those resulting from electron beam powder bed fusion (PBF-EB). For a duration of 1000 s, a phosphate/silicate electrolyte with a current density of 50 A/cm2 was employed to fabricate the coatings. Surface and polished cross-sections of the coated specimens underwent SEM and X-ray diffraction (XRD) analyses. The obtained coatings exhibit differences of up to approximately 18% in thickness and formation, as well as in their anatase phase. The anatase phase is present at a level of 54.09% in the substrates processed by PBF-EB and 38.54% in wrought substrates. After 1000 s of PEO, the coatings formed on the wrought substrates exhibited higher porosity and larger pores (>1 µm) compared to those produced on the PBF-EB specimens. The PBF-EB coatings had lower porosity because they contained fewer pores larger than 1 µm. The findings imply that the unique microstructural arrangement of PBF-EB-produced additively made Ti6Al4V materials plays a significant impact in the development and morphological properties of PEO oxide coatings.

3.
Adv Colloid Interface Sci ; 311: 102805, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36434916

ABSTRACT

Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.


Subject(s)
Anti-Infective Agents , Coated Materials, Biocompatible , Prostheses and Implants , Titanium , Animals , Anti-Infective Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Oxidation-Reduction , Surface Properties , Titanium/pharmacology
4.
J Colloid Interface Sci ; 579: 680-698, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32652323

ABSTRACT

HYPOTHESIS: Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. EXPERIMENTS: Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. FINDINGS: PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.


Subject(s)
Coated Materials, Biocompatible , Titanium , Corrosion , Humans , Oxidation-Reduction , Surface Properties
5.
Mater Sci Eng C Mater Biol Appl ; 110: 110657, 2020 May.
Article in English | MEDLINE | ID: mdl-32204085

ABSTRACT

Photofunctionalization mediated by ultraviolet (UV) rays changes the physico-chemical characteristics of titanium (Ti) and improves the biological activity of dental implants. However, the role of UV-mediated photofunctionalization of biofunctional Ti surfaces on the antimicrobial and photocatalytic activity remains unknown and was investigated in this study. Commercially pure titanium (cpTi) discs were divided into four groups: (1) machined samples without UV light application [cpTi UV-]; (2) plasma electrolytic oxidation (PEO) treated samples without UV light application [PEO UV-]; (3) machined samples with UV light application [cpTi UV+]; and (4) PEO-treated samples with UV light application [PEO UV+]. The surfaces were characterized according to their morphology, roughness, crystalline phase, chemical composition and wettability. The photocatalytic activity and proteins adsorption were measured. For the microbiological assay, Streptococcus sanguinis was grown on the disc surfaces for 1 h and 6 h, and the colony forming units and bacterial organization were evaluated. In addition, to confirm the non-cytotoxic effect of PEO UV +, human gingival fibroblast (HGF) cells were cultured in a monolayer onto each material surface and the cells viability and proliferation evaluated by a fluorescent cell staining method. PEO treatment increased the Ti surface roughness and wettability (p < 0.05). Photofunctionalization reduced the hydrocarbon concentration and enhanced human blood plasma proteins and albumin adsorption mainly for the PEO-treated surface (p < 0.05). PEO UV+ also maintained higher wettability values for a longer period and provided microbial reduction at 1 h of bacterial adhesion (p = 0.012 vs. PEO UV-). Photofunctionalization did not increase the photocatalytic activity of Ti (p > 0.05). Confocal microscopy analyses demonstrated that PEO UV+ had no cell damage effect on HGF cells growth even after 24 h of incubation. The photofunctionalization of a biofunctional PEO coating seems to be a promising alternative for dental implants as it increases blood plasma proteins adsorption, reduces initial bacterial adhesion and presents no cytotoxicity effect.


Subject(s)
Biomimetic Materials/radiation effects , Coated Materials, Biocompatible/radiation effects , Dental Implants , Ultraviolet Rays , Adsorption , Bacterial Adhesion/drug effects , Biomimetic Materials/pharmacology , Blood Proteins/metabolism , Catalysis , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Colony Count, Microbial , Electrolysis , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Oxidation-Reduction , Photoelectron Spectroscopy , Streptococcus sanguis/drug effects , Streptococcus sanguis/growth & development , Surface Properties , Titanium/pharmacology , X-Ray Diffraction
6.
Environ Technol ; 41(2): 141-152, 2020 Jan.
Article in English | MEDLINE | ID: mdl-29924692

ABSTRACT

Photocatalysis over TiO2 substrates is widely used in effluent treatment specially for organic compounds and for inactivation of pathogenic microorganisms. In the present work, TiO2 coatings were synthesized by plasma electrolytic oxidation (PEO) and its pathogenic bacteria inhibitory photoactivity was investigated. The photocatalytic activity of TiO2 coatings was investigated for the inactivation of Staphylococcus aureus and Salmonella bongori and the results were correlated with pore diameter and crystallite size. It was observed that both morphology and microstructure have an important role in the antibacterial photoactivity. The results show the larger the crystallite size and pore diameter the greater the photoactivity of the material. Porous materials that have a smaller pore diameter than the microorganism to be inactivated have low photoactivity. On the other hand, films that have pores with a diameter of the order or larger than the size of the microorganism to be inactivated present greater photocatalytic activity, once its pores allow the entrance and internal adsorption of the microorganisms, leading to the rupture of the cell membrane. Thus, in order to not sub-utilize the photocatalysts surface area, TiO2 coatings for using in microorganism inactivation must be synthesized with pore diameter bigger than the size of the microorganism.


Subject(s)
Staphylococcus aureus , Titanium , Catalysis , Oxidation-Reduction , Porosity
7.
Environ Sci Pollut Res Int ; 26(5): 4253-4259, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29998449

ABSTRACT

The plasma electrolytic oxidation (PEO) technique was used to prepare photocatalytic S-TiO2 coatings on Ti sheets; the incorporation of the S ions was possible from the electrolyte for modifying the structural and optics characteristics of the material. In this work, substrates of Ti (ASME SB-265 of 20 × 20 × 1 mm) were used in a PEO process in 10 min, using constant voltage pulses of 340 V with frequency of 1 kHz and duty cycles of 10% and of 30%. Solutions with H2SO4 (0.1 M) and CH4N2S (52 and 79 mM) were used as electrolytes. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy (EDS) were utilized to analyze the surface morphology, crystalline phase, and chemical composition of the samples. According to the results, the catalyst coatings had microporous structure and contained anatase-rutile TiO2 nanocrystalline mixture, until 73.2% rutile and 26.8% anatase in the samples grown with 30% duty cycle and the lowest concentration of CH4N2S. From the EDS measurements, the incorporation of sulfur ions to the coatings was 0.08 wt%. 99.5% reduction efficiency of Cr(VI)-EDTA with sunlight was observed after 2 h; it was determined by diphenyl carbazide spectrophotometric method. These coatings have potential for effective sunlight heterogeneous photoreduction of this toxic, cumulative, and non-biodegradable heavy metal that contaminates the soil and water and is a serious risk to sustainability, ecosystems, and human health.


Subject(s)
Air Pollutants/analysis , Chromium/analysis , Edetic Acid/chemistry , Sulfur/chemistry , Sunlight , Titanium/chemistry , Air Pollutants/radiation effects , Catalysis , Chromium/radiation effects , Electrolytes/chemistry , Oxidation-Reduction , Plasma Gases/chemistry , Porosity , Surface Properties
8.
Mater Sci Eng C Mater Biol Appl ; 77: 1235-1241, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28532001

ABSTRACT

Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1µL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb2O5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition.


Subject(s)
Electrolysis , Apatites , Microscopy, Electron, Scanning , Niobium , Oxidation-Reduction , Surface Properties , Titanium
9.
Int J Implant Dent ; 2(1): 12, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27747704

ABSTRACT

BACKGROUND: Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. METHODS: Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. RESULTS: SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. CONCLUSIONS: PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

10.
Mater Sci Eng C Mater Biol Appl ; 37: 223-31, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24582243

ABSTRACT

This study systematically evaluated the surface and corrosion characteristics of commercially pure titanium (grade 2) modified by plasma electrolytic oxidation (PEO) with high current density. The anodization process was carried out galvanostatically (constant current density) using a solution containing calcium glycerophosphate (0.02mol/L) and calcium acetate (0.15mol/L). The current densities applied were 400, 700, 1000 and 1200mA/cm(2) for a period of 15s. Composition, crystalline structure, morphology, roughness, wettability and "in-vitro" bioactivity test in SBF of the anodized layer were evaluated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, profilometry and contact angle measurements. Corrosion properties were evaluated by open circuit potential, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results show that the TiO2 oxide layers present an increase of thickness, porosity, roughness, wettability, Ca/P ratio, and bioactivity, with the applied current density up to 1000mA/cm(2). Corrosion resistance also increases with applied current density. It is observed that for 1200mA/cm(2), there is a degradation of the oxide layer. In general, the results suggest that the anodized TiO2 layer with better properties is formed with an applied current of 1000mA/cm(2).


Subject(s)
Calcium/chemistry , Phosphorus/chemistry , Titanium/chemistry , Corrosion , Dielectric Spectroscopy , Electrochemical Techniques , Electrodes , Electrolytes/chemistry , Hardness , Oxidation-Reduction , Porosity , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL