Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508474

ABSTRACT

Metastasis promotes the development of tumors and is a significant cause of gastric cancer death. For metastasis to proceed, tumor cells must become mobile by modulating their cytoskeleton. MICAL1 (Molecule Interacting with CasL1) is known as an actin cytoskeleton regulator, but the mechanisms by which it drives gastric cancer cell migration are still unclear. Analysis of gastric cancer tissues revealed that MICAL1 expression is dramatically upregulated in stomach adenocarcinoma (STAD) samples as compared to noncancerous stomach tissues. Patients with high MICAL1 expression had shorter overall survival (OS), post-progression survival (PPS) and first-progression survival (FPS) compared with patients with low MICAL1 expression. RNAi-mediated silencing of MICAL1 inhibited the expression of Vimentin, a protein involved in epithelial-mesenchymal transition. This effect correlates with a significant reduction in gastric cancer cell migration. MICAL1 overexpression reversed these preventive effects. Immunoprecipitation experiments and immunofluorescence assays revealed that PlexinA1 forms a complex with MICAL1. Importantly, specific inhibition of PlexinA1 blocked the Rac1 activation and ROS production, which, in turn, impaired MICAL1 protein stability by accelerating MICAL1 ubiquitin/proteasome-dependent degradation. Overexpression of PlexinA1 enhanced Rac1 activation, ROS production, MICAL1 and Vimentin expressions, and favored cell migration. In conclusion, this study identified MICAL1 as an important facilitator of gastric cancer cell migration, at least in part, by affecting Vimentin expression and PlexinA1 promotes gastric cancer cell migration by binding to and suppressing MICAL1 degradation in a Rac1/ROS-dependent manner.


Subject(s)
Stomach Neoplasms , Humans , Calponins , Cell Line, Tumor , Microfilament Proteins/metabolism , Mixed Function Oxygenases/metabolism , Proteasome Endopeptidase Complex/metabolism , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism , Ubiquitin/metabolism , Vimentin/genetics , Vimentin/metabolism
2.
Cell Stress Chaperones ; 29(1): 201-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38331165

ABSTRACT

Chronic stress is a common emotional disorder in cancer patients. Chronic stress promotes progression of gastric cancer (GC) and leads to poor outcomes. However, the underlying mechanisms remain not clear. Herein, we explored the possible mechanisms of chronic stress in GC progression. The Cancer Genome Atlas (TCGA) datasets were analyzed for differentially expressed genes. Clinical data of GC were evaluated for their association with PlexinA1 using TCGA and Kaplan-Meier-plotter databases. Chronic stress of GC patients was evaluated using the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Chronic unpredictable mild stress (CUMS) was used to induce chronic stress in mice. Gastric xenograft tumor was constructed using the sewing method. Chronic stress-like behaviors were assessed using light/dark box and tail suspension tests. Protein expression was detected using immunohistochemistry and Western blot analysis. Analyses of TCGA and the Kaplan-Meier-plotter databases showed that patients with high levels of PlexinA1 in GC had worse overall survival than those with low levels of PlexinA1. A total of 36 GC patients were enrolled in the study, and about 33% of the patients had chronic stress. Compared with patients without chronic stress, higher expression levels of adrenoceptor beta 2 and PlexinA1 were observed in patients with chronic stress. The tumor size in mice under CUMS was significantly increased compared with the control mice. Adrenoceptor beta 2, PlexinA1, N-cadherin, and alpha-smooth muscle actin, as well as Ki67 were highly expressed in the tumors of CUMS group. However, E-cadherin was lowly expressed in the tumors of CUMS group. Importantly, chemical sympathectomy with 6-hydroxydopamine or treatment with a selective ß2 adrenergic receptor antagonist (ICI118,551) could reverse these effects. Our findings suggest that chronic stress plays an important role in GC progression and there is a potential for blocking the epinephrine-ß2AR/PlexinA1 pathway in the treatment of GC.


Subject(s)
Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Receptors, Adrenergic
3.
Biol Trace Elem Res ; 202(5): 2124-2132, 2024 May.
Article in English | MEDLINE | ID: mdl-37606879

ABSTRACT

Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.


Subject(s)
Anti-Ulcer Agents , Boric Acids , Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Antioxidants/metabolism , Interleukin-6/metabolism , AMP-Activated Protein Kinases , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Semaphorin-3A/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Oxidative Stress , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Gastric Mucosa , Ethanol/adverse effects , Signal Transduction , Homocysteine/metabolism
4.
Cell Signal ; 105: 110613, 2023 05.
Article in English | MEDLINE | ID: mdl-36720439

ABSTRACT

BACKGROUND: Diabetes exacerbates neointima formation after vascular procedures, manifested by accelerated proliferation and migration of vascular smooth muscle cells (VSMCs). Semaphorin 3G (Sema3G), secreted mainly from endothelial cells (ECs), regulates various cellular functions and vascular pathologies. However, the function and potential mechanism of ECs-derived Sema3G in VSMCs under diabetic condition remain unclear. OBJECTIVE: To investigate the role and the mechanism of ECs-derived Sema3G in the regulation of VSMCs proliferation and migration. RESULTS: ECs-derived Sema3G promoted human aortic SMCs (HASMCs) cell cycle progression and proliferation. Sema3G upregulated the expression of MMP2 and MMP9, which might explain the increased HASMCs migration by Sema3G. Inhibition of Nrp2/PlexinA1 mitigated the effect of Sema3G on promoting HASMCs proliferation and migration. Mechanistically, Sema3G inhibited LATS1 and activated YAP via Nrp2/PlexinA1. Verteporfin, an FDA-approved YAP pathway inhibitor, counteracted Sema3G-induced cyclin E and cyclin D1 expression. Besides, Sema3G expression was upregulated in ECs of diabetic mouse aortas. Serum Sema3G level was increased in type 2 diabetic patients and mice. Moreover, compared to chow diet-fed mice, high-fat diet (HFD)-fed obese mice showed thicker neointima and higher Sema3G expression in vasculature after femoral injury. CONCLUSIONS: Our results indicated that ECs-derived Sema3G under diabetic condition activated YAP and promoted HASMCs proliferation and migration via Nrp2/PlexinA1. Thus, inhibition of Sema3G may hold therapeutic potential against diabetes-associated intimal hyperplasia.


Subject(s)
Semaphorins , Animals , Humans , Mice , Cell Movement , Cell Proliferation/physiology , Endothelial Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Neointima/metabolism , Semaphorins/metabolism , YAP-Signaling Proteins/metabolism
5.
IBRO Neurosci Rep ; 13: 500-512, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36451778

ABSTRACT

PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins (Semas), a large family of axonal guidance cues vital during neural development. PlxnA1 is expressed in embryonic interneurons, and PlxnA1 deletion in mice leads to less interneurons in the developing cortex. In addition, PlxnA1 has been identified as a schizophrenia susceptibility gene. In our previous study, PlxnA1 knockout (KO) mice under a BALB/cAJ genetic background exhibited significantly increased self-grooming and reduced prepulse inhibition, a reliable phenotype for investigating the neurobiology of schizophrenia. However, the mechanism underlying the abnormal behavior of PlxnA1 KO mice remains unclear. We first confirmed PlxnA1 mRNA expression in parvalbumin-expressing interneurons (PV cells) in the medial prefrontal cortex (mPFC) of adult mice. Immunohistochemical analysis (IHC) showed significantly decreased densities of both GABAergic neurons and PV cells in the mPFC of PlxnA1 KO mice compared with wild type mice (WT). PV cells were found to express molecule interacting with CasL 1 (MICAL1), an effector involved in Sema-Plxn signaling for axon guidance, suggesting MICAL1 and PlxnA1 co-expression in PV cells. Furthermore, IHC analysis of 8-oxo-dG, an oxidative stress marker, revealed significantly increased oxidative stress in PlxnA1-deficient PV cells compared with WT. Thus, increased oxidative stress and decreased PV cell density in the mPFC may determine the onset of PlxnA1 KO mice's abnormal behavior. Accordingly, deficient PlxnA1-mediated signaling may increase oxidative stress in PV cells, thereby disrupting PV-cell networks in the mPFC and causing abnormal behavior related to neuropsychiatric diseases.

6.
J Cancer ; 13(7): 2258-2270, 2022.
Article in English | MEDLINE | ID: mdl-35517411

ABSTRACT

With the medical model shifting from a single biomedical model to a biopsychological-social model, the impact of psychosocial factors on cancer patients has attracted attention. Studies have shown that chronic stress caused by long-term psychological stress, such as anxiety and depression, can promote the malignant progression of tumors by acting on ß2-adrenergic receptor (ß2-AR). ß2-AR can promote tumor migration by activating epithelial-mesenchymal transition (EMT). However, the underlying mechanisms in the regulation of EMT by ß2-AR are still unclear. In this study, we established a chronic stress model by treating MGC-803 and SGC-7901 human gastric cancer cells with isoproterenol (ISO), a ß2-AR agonist. EMT in the two gastric cancer cell lines was enhanced after ISO treatment. Thereafter, we found that the interaction between ß2-AR and PlexinA1 was involved in the process by which chronic stress affects EMT in both MGC-803 and SGC-7901 cells. Moreover, the activation of ß2-AR by ISO increased the expression of PlexinA1, activated JAK-STAT3 signaling and further promoted EMT in human gastric cancer cells. Importantly, the knockdown of PlexinA1 by small hairpin RNAs inhibited JAK-STAT3 signaling and abolished the EMT induced by ß2-AR. In conclusion, PlexinA1 was an important downstream target of ß2-AR, through which ß2-AR promoted EMT in human gastric cancer cells by activating JAK-STAT3 signaling.

7.
Front Oncol ; 11: 709057, 2021.
Article in English | MEDLINE | ID: mdl-34485146

ABSTRACT

It is known that chronic stress modulates multiple processes in a complex microenvironment, such as angiogenesis and immune function. However, the role of chronic stress inducing tumor angiogenesis and how it contributes to tumor progression are not quite clear. The following study assess psychological state from numerous ambulatory cancer cases (n=332), and chronic stress-related hormone levels were further measured. Here, we show that chronic stress not only causes behavioral changes in human, most importantly attributed to an elevated level of stress-related hormones. To address this, isoprenaline, the agonist of ß2-adrenergic receptor (ß2-AR), was utilized for simulating chronic stress and demonstrating the mechanism of stress in tumor angiogenesis at molecular level both in vivo and in vitro. As suggested by this study, isoprenaline promote VEGF autocrine of HUVECs, which can induce plexinA1 and VEGFR2 expression. Moreover, we show that isoprenaline promoted the expression of p-JAK2 and p-STAT3 in vitro. The results reveal that, isoprenaline enhances the autocrine of VEGF in HUVECs and up-regulating plexinA1 and VEGFR2 levels, thus activating the phosphorylation of JAK2-STAT3 pathway, the two essential parts during angiogenesis. The present work indicates that, the mechanism of chronic stress in enhancing angiogenesis is probably achieved through activating the plexinA1/VEGFR2-JAK2-STAT3 signal transduction pathway within HUVECs, and this is probably a candidate target for developing a strategy against angiogenesis in cancer.

8.
eNeuro ; 8(3)2021.
Article in English | MEDLINE | ID: mdl-33811086

ABSTRACT

Cell movement propels embryonic tissues to acquire shapes required for mature function. The movements are driven both by acto-myosin signaling and by cells interacting with the extracellular matrix (ECM). Unknown is whether cell-cell interactions within a tissue are also required, and the molecular mechanisms by which such communication might occur. Here, we use the developing visual system of zebrafish as a model to understand the role cell-cell communication plays in tissue morphogenesis in the embryonic nervous system. We identify that cell-cell-mediated contact between two distinct cell populations, progenitors of the neural retina and retinal pigment epithelium (RPE), facilitates epithelial flow to produce the mature cupped retina. We identify for the first time the need in eye morphogenesis for distinct populations of progenitors to interact, and suggest a novel role for a member of a key developmental signaling family, the transmembrane Semaphorin6d, as mediating communication between distinct cell types to control tissue morphogenesis.


Subject(s)
Retinal Pigment Epithelium , Semaphorins , Animals , Morphogenesis , Nervous System , Retina , Zebrafish
9.
Gene Expr Patterns ; 27: 56-66, 2018 01.
Article in English | MEDLINE | ID: mdl-29107805

ABSTRACT

Plexins (Plxns) and Semaphorins (Semas) are key signaling molecules that regulate many aspects of development. Plxns are a family of transmembrane protein receptors that are activated upon extracellular binding by Semas. Activated Plxns trigger intracellular signaling cascades, which regulate a range of developmental processes, including axon guidance, neuronal positioning and vasculogenesis. Semas are a large family of both transmembrane and secreted signaling molecules, and show subtype specific binding to different Plxn family members. Each Plxn can play different roles in development, and so tightly regulated temporal and spatial expression of receptor subtypes is critical to ensure appropriate signaling. Here we elucidate the expression profiles of the plxnA family, plxnA1a, A1b, A2, A3 and A4 at 18, 24, 36, 48, 60 and 72 h post fertilization in the developing zebrafish. We show that PlxnA family members are expressed in neuronal tissues during zebrafish development, but exhibit key differences in expression within these tissues. We also highlight that plxnA1 has two genes in zebrafish, A1a and A1b, which show divergences in expression patterns during early development.


Subject(s)
Cell Adhesion Molecules/metabolism , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Zebrafish Proteins/metabolism , Zebrafish/growth & development , Zebrafish/genetics , Animals , Cell Adhesion Molecules/genetics , Cells, Cultured , In Situ Hybridization , Nerve Tissue Proteins/genetics , Neurons/cytology , Phylogeny , Signal Transduction , Zebrafish/metabolism , Zebrafish Proteins/genetics
10.
Cancer Research and Clinic ; (6): 336-338, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-470894

ABSTRACT

Objective To explore expression of plexinA1 and Ki-67 in tissue of human brain glioma cells and their clinical significance.Methods 43 specimens from patients with brain glioma were collected.Immunohistochemical (IHC) staining was used for detecting the expression of tissue plexinA1 and Ki-67 in human glioma cells of 43 cases of patients with brain glioma.The positive expression rate of plexinA1 and Ki-67 among the different pathological grade tissues and their clinical significance were analyzed.So did correlation studies about plexinA1 and Ki-67.Results The positive expression rates of plexinA1 in Ⅰ-Ⅱ grade group (18 cases) and Ⅲ-Ⅳ grade group (25 cases) were 22.22 % (4/18) and 72.00 % (18/25) (P < 0.05).The positive expression rates of Ki-67 in Ⅰ-Ⅱ grade group and Ⅲ-Ⅳ grade group were 16.67 % (3/18) and 56.00 % (14/25),respectively (P < 0.05).PlxinA1 and Ki-67 expression in the tissue of human brain glioma were positively correlated (r =0.997,P < 0.05).Conclusions The positive expression rate of plexinA1 is higher in high malignancy human glioma group than that in low malignancy group which has an important reference value in the estimation of prognosis for human glioma.PlexinA1 and Ki-67 maybe synergism in occurrence and development of glioma.

SELECTION OF CITATIONS
SEARCH DETAIL