Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.304
Filter
1.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991107

ABSTRACT

Although concentrations of ambient air pollution continue to decline in high-income regions, epidemiological studies document adverse health effects at levels below current standards in many countries. The Health Effects Institute (HEI) recently completed a comprehensive research initiative to investigate the health effects of long-term exposure to low levels of air pollution in the United States (U.S.), Canada, and Europe. We provide an overview and synthesis of the results of this initiative along with other key research, the strengths and limitations of the research, and remaining research needs. The three studies funded through the HEI initiative estimated the effects of long-term ambient exposure to fine particulate matter (PM2.5), nitrogen dioxide, ozone, and other pollutants on a broad range of health outcomes, including cause-specific mortality and cardiovascular and respiratory morbidity. To ensure high quality research and comparability across studies, HEI worked actively with the study teams and engaged independent expert panels for project oversight and review. All three studies documented positive associations between mortality and exposure to PM2.5 below the U.S. National Ambient Air Quality Standards and current and proposed European Union limit values. Furthermore, the studies observed nonthreshold linear (U.S.), or supra-linear (Canada and Europe) exposure-response functions for PM2.5 and mortality. Heterogeneity was found in both the magnitude and shape of this association within and across studies. Strengths of the studies included the large populations (7-69 million), state-of-the-art exposure assessment methods, and thorough statistical analyses that applied novel methods. Future work is needed to better understand potential sources of heterogeneity in the findings across studies and regions. Other areas of future work include the changing and evolving nature of PM components and sources, including wildfires, and the role of indoor environments. This research initiative provided important new evidence of the adverse effects of long-term exposures to low levels of air pollution at and below current standards, suggesting that further reductions could yield larger benefits than previously anticipated.

2.
Environ Int ; 190: 108878, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38991262

ABSTRACT

BACKGROUND: Emerging evidence shows that long-term exposure to air pollution, road traffic noise, and greenness can each be associated with cardiovascular disease, but only few studies combined these exposures. In this study, we assessed associations of multiple environmental exposures and incidence of myocardial infarction using annual time-varying predictors. MATERIALS AND METHODS: In a population-based cohort of 20,407 women in Sweden, we estimated a five-year moving average of residential exposure to air pollution (PM2.5, PM10 and NO2), road traffic noise (Lden), and greenness (normalized difference vegetation index, NDVI in 500 m buffers), from 1998 to 2017 based on annually varying exposures and address history. We used adjusted time-varying Cox proportional hazards regressions to estimate hazard ratios (HR) and 95 % confidence intervals (95 % CI) of myocardial infarction per interquartile range (IQR). Furthermore, we investigated interactions between the exposures and explored potential vulnerable subgroups. RESULTS: In multi-exposure models, long-term exposure to greenness was inversely associated with incidence of myocardial infarction (HR 0.89; 95 % CI 0.80, 0.99 per IQR NDVI increase). Stronger associations were observed in some subgroups, e.g. among women with low attained education and in overweight (BMI ≥ 25 kg/m2) compared to their counterparts. For air pollution, we observed a tendency of an increased risk of myocardial infarction in relation to PM2.5 (HR 1.07; 95 % CI 0.93, 1.23) and the association appeared stronger in women with low attained education (HR 1.30; 95 % CI 1.06, 1.58). No associations were observed for PM10, NO2 or road traffic noise. Furthermore, there were no clear interaction patterns between the exposures. CONCLUSION: Over a 20-year follow-up period, in multi-exposure models, we found an inverse association between residential greenness and risk of myocardial infarction among women. Furthermore, we observed an increased risk of myocardial infarction in relation to PM2.5 among women with low attained education. Road traffic noise was not associated with myocardial infarction.

3.
Article in English | MEDLINE | ID: mdl-38992302

ABSTRACT

The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.

4.
Sci Total Environ ; : 174546, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992347

ABSTRACT

Following the Fukushima Daiichi Nuclear Power Plant disaster in March 2011, the Japanese government initiated an unprecedented decontamination programme to remediate 137Cs-contaminated soils and allow population return. This programme involved the removal of topsoil under farmland and residential land, and its replacement with "fresh soil" composed of granitic saprolite. However, decontamination was limited to these two land uses, without remediating forests, which cover 70 % of the surface area in the affected region. In this unprecedented context, the specific impact of this unique decontamination programme on 137Cs transfers in river systems remains to be quantified at the catchment scale. In this study, based on the analysis of a sediment core collected in June 2021 in the Mano Dam reservoir draining a decontaminated catchment, the effects of soil decontamination on particle-bound 137Cs dynamics and sediment source contributions in response to a succession of extreme precipitation events were retrospectively assessed. The sequence of sediment layer deposition and its chronology were reconstructed through the analysis of several diagnostic properties (organic matter, elemental geochemistry, visible colourimetry, granulometry) and contextual information. During abandonment (2011-2016), cropland contribution decreased (31 %). Concurrently, 137Cs activity and deposition flux decreased (19 and 29%year-1, respectively). Following decontamination (2017), sediment transfer increased (270 %) in response to increased contributions from decontaminated cropland and "fresh soil" (625 % and 180 % respectively). Meanwhile, forest contributions remained stable. In contrast, 137Cs activity dropped (65 %), although 137Cs deposition flux remained constant. Forests acted as a stable source of 137Cs. Accordingly, 137Cs deposition flux after decontamination (2016-2021) was similar to that observed during the 5-years period of land abandonment (2011-2016), as a result of the regrowth of spontaneous vegetation over farmland, protecting soil against erosion. Future research should further investigate the impact of longer land abandonment that prevailed in some regions decontaminated lately on the 137Cs fluxes in the rivers.

5.
Sci Total Environ ; : 174611, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992356

ABSTRACT

Air pollution induced by fine particulate matter with diameter ≤ 2.5 µm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 µg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 µg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.

6.
Sci Total Environ ; : 174679, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992370

ABSTRACT

Heavy metal ions and antibiotics were simultaneously detected in authentic water systems. This research, for the first time, employed synthesized sophorolipid-modified fly ash(SFA) to eliminate tetracycline(TC) and lead(Pb2+) from wastewater. Various characterization techniques, including SEM-EDS, FTIR, XPS, BET, and Zeta, were employed to investigate the properties of the SFA. The results showed that the sophorolipid modification significantly improved the fly ash's adsorption capacities for the target pollutants. The static adsorption experiments elucidated the adsorption behaviors of SFA towards TC and Pb2+ in single and binary systems, highlighting the effects of different Environmental factors on the adsorption behavior in both types of systems. In single systems, SFA exhibited a maximum adsorption capacity of 128.96 mg/g for Pb2+ and 55.57 mg/g for TC. The adsorption of Pb2+ and TC followed pseudo-second-order kinetics and Freundlich isotherm models. The adsorption reactions are endothermic and occur spontaneously. SFA demonstrates varying adsorption mechanisms for two different types of pollutants. In the case of Pb2+, the primary mechanisms include ion exchange, electrostatic interaction, cation-π interaction, and complexation, while TC primarily engages in hydrogen bonding, π-π interaction, and complexion. The interaction between Pb2+ and TC has been shown to improve adsorption efficiency at low concentrations. Additionally, adsorption-desorption experiments confirm the reliable cycling performance of modified fly ash, highlighting its potential as a cost-effective and efficient adsorbent for antibiotics and heavy metals.

7.
Sci Total Environ ; : 174663, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992379

ABSTRACT

The microbiota associated with aquatic plants plays a crucial role in promoting plant growth and development. The structure of the plant microbiome is shaped by intricate interactions among hosts, microbes, and environmental factors. Consequently, anthropogenic pressures that disrupt these interactions can indirectly impact the ecosystem services provided by aquatic plants, such as CO2 fixation, provision of food resources, shelter to animals, nutrient cycling, and water purification. Presently, studies on plant-microbiota interactions primarily focus on terrestrial hosts and overlook aquatic environments with their unique microbiomes. Therefore, there is a pressing need for a comprehensive understanding of plant microbiomes in aquatic ecosystems. This review delves into the overall composition of the microbiota associated with aquatic plant, with a particular emphasis on bacterial communities, which have been more extensively studied. Subsequently, the functions provided by the microbiota to their aquatic plants hosts are explored, including the acquisition and mobilization of nutrients, production of auxin and related compounds, enhancement of photosynthesis, and protection against biotic and abiotic stresses. Additionally, the influence of anthropogenic stressors, such as climate change and aquatic contamination, on the interaction between microbiota and aquatic plants is discussed. Finally, knowledge gaps are highlighted and future directions in this field are suggested.

8.
Article in English | MEDLINE | ID: mdl-38992473

ABSTRACT

BACKGROUND: The discriminatory and racist policy of historical redlining in the United States (U.S.) during the 1930s played a role in perpetuating contemporary environmental health disparities. OBJECTIVE: Our objectives were to determine associations between home and school pollutant exposure (fine particulate matter (PM2.5), nitrogen dioxide (NO2)) and respiratory outcomes (Composite Asthma Severity Index (CASI), lung function) among school-aged children with asthma and examine whether associations differed between children who resided and/or attended school in historically redlined compared to non-redlined neighborhoods. METHODS: Children ages 6 to 17 with moderate-to-severe asthma (N=240) from 9 U.S. cities were included. Combined home and school exposure to PM2.5 and NO2 was calculated based on geospatially assessed monthly averaged outdoor pollutant concentrations. Repeated measures of CASI and lung function were collected. RESULTS: Overall, 37.5% of children resided and/or attended schools in historically redlined neighborhoods. Children in historically redlined neighborhoods had greater exposure to NO2 (median: 15.4 vs 12.1 ppb) and closer distance to a highway (median: 0.86 vs 1.23 km), compared to those in non-redlined neighborhoods (p<0.01). Overall, PM2.5 was not associated with asthma severity or lung function. However, among children in redlined neighborhoods, higher PM2.5 was associated with worse asthma severity (p<0.005). No association was observed between pollutants and lung function or asthma severity among children in non-redlined neighborhoods (p>0.005). CONCLUSIONS: Our findings highlight the significance of historical redlining and current environmental health disparities among school-aged children with asthma, specifically, the environmental injustice of PM2.5 exposure and its associations with respiratory health.

9.
Int J Biol Macromol ; : 133795, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992532

ABSTRACT

In this study, to develop efficient adsorbents in removing water pollution, new cellulose-citric acid-chitosan@metal sulfide nanocomposites (CL-CA-CS@NiS and CL-CA-CS@CuS) were synthesized by one-pot reaction at mild conditions and characterized using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) isotherm. The results of characterization techniques confirm that the desired compounds have been successfully synthesized. The as-prepared composites were applied for the removal of methyl orange (MO) dye from aqueous solutions using a batch technique, and the effect of key factors such as initial pH, shaking time, MO concentration, temperature and adsorbent dose were investigated and discussed. Adsorption results exhibited positive impact of temperature, shaking time and adsorbent dose on the MO removal percent. The MO removal percent has been increased over a wide range of pH from 2 (27.6 %) to 6 (98.8 %). Also, almost being constant over a wide range of MO concentration (10-70 mg/L). The results demonstrated that the maximum removal percentage of MO dye (98.9 % and 93.4 % using CL-CA-CS@NiS and CL-CA-CS@CuS, respectively) was achieved under the conditions of pH 6, shaking time of 120 min, adsorbent dose of 0.02 g, MO concentration of 70 mg/L and temperature of 35 °C. The pseudo-second-order (PSO) and Langmuir models demonstrated the best fit to the kinetic and equilibrium data. Also, the thermodynamic results showed that the MO removal process is endothermic and spontaneous in nature. The MO adsorption can be happened by different electrostatic attraction, n-π and π-π stacking and also hydrogen bonding interaction. In addition, antibacterial activity of CL-CA-CS@NiS and CL-CA-CS@CuS nanocomposites exhibited a superior efficiency against S. aureus.

10.
BMC Public Health ; 24(1): 1856, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992628

ABSTRACT

The objective of this umbrella review was to investigate comprehensive and synthesized evidence of the association between ambient air pollution and obesity based on the current systematic reviews and meta-analyses. Related studies from databases including PubMed, EMBASE, Web of Science, and the Cochrane Library, published before July 16, 2023, were considered in the analysis. All selected systematic reviews and meta-analyses were included in accordance with PRISMA guidelines. The risk of bias and the methodological quality were evaluated using the AMSTAR 2 tool. The protocol for this umbrella review was documented in PROSPERO with the registration number: CRD42023450191. This umbrella review identified 7 studies, including 5 meta-analyses and 2 systematic reviews, to assess the impacts of air pollutants on obesity. Commonly examined air pollutants included PM1, PM2.5, PM10, NO2, SO2, O3. Most of the included studies presented that air pollution exposure was positively associated with the increased risk of obesity. The impact of air pollution on obesity varied by different ambient air pollutants. This study provided compelling evidence that exposure to air pollution had a positive association with the risk of obesity. These findings further indicate the importance of strengthening air pollution prevention and control. Future studies should elucidate the possible mechanisms and pathways linking air pollution to obesity.


Subject(s)
Air Pollutants , Air Pollution , Meta-Analysis as Topic , Obesity , Systematic Reviews as Topic , Humans , Air Pollution/adverse effects , Obesity/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects
11.
Environ Res ; : 119580, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992757

ABSTRACT

Physicochemical and toxicological characterization of leather tanning wastewater has been widely documented. However, few reports have examined the response of denitrification N2 and N2O emissions in riparian sediments of tannery wastewater-receiving rivers. In this study, 15N-nitrate labeling was used to reveal the effects of tanning wastewater on denitrification N2 and N2O emission in a wastewater-receiving river (the old Mang River, OMR). OMR riparian sediments were highly polluted with total organic carbon (93.39 mg/kg), total nitrogen (5.00 g/kg) and heavy metals; specifically, Cr, Zn, Cd, and Pb were found at concentrations 47.3, 5.8, 1.6, 4.3, and 2.8 times that in a nearby parallel river without tanning wastewater input (the new Mang River, NMR), respectively. The denitrification N2 emission rates (0.0015 nmol N · g-1 · h-1) of OMR riparian sediments were significantly reduced by 2.5 times compared with those from the NMR (p < 0.05), but the N2O emission rates (0.31 nmol N · g-1 · h-1) were significantly increased (4.1 times, p < 0.05). Although the dominant nitrogen-transforming bacteria phylum was Proteobacteria in the riparian sediments of both rivers, 11 nitrogen-transforming bacteria genera in the OMR were found to be significantly enriched; five of these were related to pollutant degradation based on linear discriminant analysis (LDA > 3). The average activity of the electron transport system in the OMR was 6.3 times lower than that of the NMR (p < 0.05). Among pollution factors, heavy metal complex pollution was the dominant factor driving variations in N2O emissions, microbial community structure, and electron transport system activity. These results provide a new understanding and reference for the treatment of tanning wastewater-receiving rivers.

12.
Environ Pollut ; : 124518, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992830

ABSTRACT

Exposure to ionizing radiation inside houses, especially radionuclides of radon and its progeny, poses serious health risks that can be exacerbated when inhaled as a result of interaction with human lung tissue. Also, air ionization is mainly due to these radionuclides. Therefore, accurate measurements of radon activity concentrations and its short-lived progeny are required to assess dose and environmental pollution and estimate ionization rates in indoor environments. For this purpose, we employed a previously tested and approved reliable method, following the three-count procedure. This method is based on airborne radon progeny sampling on polycarbonate membrane filters and alpha counting using a passive α-dosimetry technique with CR-39 detectors. The method also relies on a PC-based software we developed for solving mathematical equations and calculating all the necessary physical quantities. In this study, the concentrations of radon and individual short-lived radon progeny were measured in 20 houses in Sana'a, Yemen. Measurement conditions and meteorological variables were considered. The average activity concentrations of 222Rn, Equilibrium-Equivalent Concentration (EEC), 218Po, 214Pb, and 214Po were 73.1 ± 6.0, 29.2 ± 2.4, 44.4 ± 3.6, 30.5 ± 2.5, and 23.2 ± 1.9 Bq.m-3, respectively. The calculated average unattached fractions f1(218Po), f2(214Pb), and fp were found to be 0.24, 0.04, and 0.07 % respectively. The annual average values of ion-pair production rate caused by 222Rn and their progeny and air ion concentration, were 27.25 ions.cm-3s-1 and 1829 ions.cm-3 respectively. The annual effective dose was estimated to be 1.93 ± 0.16 mSv.y-1, well lower than the recommended 10 mSv.y-1.

13.
Environ Monit Assess ; 196(8): 715, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980507

ABSTRACT

The study explores the aftermath of a wastewater reservoir failure in a phosphate fertilizer industry, resulting in the release of acidic water containing phosphorus and sulfate compounds into the Ashalim stream's Nature Reserve in the Judean desert, which affected the soil surface biological crusts (biocrusts) layer. The study aims to examine contamination effects on biocrusts over 3 years at two research sites along the stream, compare effects between contaminated sites, assess rehabilitation treatments, and examine their impact on soil characteristics. Hypotheses suggest significant damage to biocrusts due to acidic water flow, requiring human intervention for accelerated restoration. The results indicate adverse effects on biocrust properties, risking its key role in the desert ecosystem. The biocrust layer covering the stream's ground surface suffered significant physical, chemical, and biological damage due to exposure to industrial process effluents. However, soil enrichment treatments, including biocrust components and organic material, show promising effects on biocrust recovery.


Subject(s)
Desert Climate , Environmental Monitoring , Soil , Soil/chemistry , Soil Pollutants/analysis , Fertilizers , Wastewater/chemistry , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 947: 174579, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981535

ABSTRACT

The current status of environmental pollution by heavy metals (HMs) will affect the entire ecosystem components. The results obtained so far indicate that some plants can be effective in removing toxic metals from the soil. For this purpose, the phytoremediation ability of three fleshy ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis), was evaluated under the stress of HMs. These succulents are known for their remarkable adaptive capabilities, allowing them to thrive in harsh environmental conditions, including those with high levels of contaminants. Their robust nature, efficient water-use strategies, and proven potential for heavy metal accumulation made them viable candidates for investigating their phytoremediation potential. This experiment was performed as factorial based on completely randomized block design with two factors; the first factor included the type of plant in 3 levels (cactus, kalanchoe and bryophyllum) and the second one included the type of metal in 5 levels (control, silver, cadmium, lead and nickel) in 3 repetitions. The concentration of each salt used was 100 ppm. The measured parameters included stem height, relative growth, diameter, dry matter percentage of root and shoot, chlorophyll a, b and total chlorophyll, carotenoid, anthocyanin, proline, and elements of nickel, silver, lead and cadmium, as well biological concentration factor. The results showed that the highest amount of final stem height, relative growth, dry matter percentage of shoot and the highest amount of chlorophyll a and b, carotenoid and anthocyanin were obtained in bryophyllum. Also, the results of mean comparison of the data related to the effect of metal type on the plants showed that the highest amount of carotenoid, anthocyanin and biological concentration factor were induced by cadmium. On the other hand, the highest and lowest amount of proline as well anthocyanin and proline were induced by silver and lead, respectively. Totally, bryophyllum had a high resistance to HMs and the examined HMs had less effect on the growth of this plant. Cactus, among trial species, exhibited superior potential for HM absorption compared to kalanchoe and bryophyllum. The study underscores cactus as an excellent phytoremediator.

15.
Bull Environ Contam Toxicol ; 113(1): 1, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38949743

ABSTRACT

Microplastics (MPs) pollution is a profound problem around the world yet it's study on the effect on zooplankton including copepods are very limited. The study was conducted between January 2021 and January 2022 in the Lower Meghna Estuary to investigate MPs ingestion in two different family of copepod: Calanoid and Cyclopoid. A method of acid digestion along with Scanning Electron Microscope (SEM) was used to identify MPs ingested by copepods from the conducted area. However, three types of MPs namely fiber, fragment and foam were extracted from this copepod biomass. Fibers represent highest (> 50%) of the ingested MPs from both group of copepod that exceed fragments and foams in all sampling stations. The overall ingestion rate of Calanoid was found higher (0.084 ± 0.002 particles/individual) compared to the Cyclopoid group (0.077 ± 0.001 particles/individual). The results of the study have effectively illustrated that copepod, obtained from multiple sampling sites within the Lower Meghna Estuary, display a propensity to ingest MPs and subsequently endangering the food security of seafood industry.


Subject(s)
Copepoda , Environmental Monitoring , Estuaries , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Bangladesh , Eating
16.
Int J Gen Med ; 17: 2833-2845, 2024.
Article in English | MEDLINE | ID: mdl-38947566

ABSTRACT

Background: Despite deep cultural traditions, incense burning significantly impacts respiratory health. Effects of Arabian bakhour remain unknown in Saudi Arabia's Jazan region with prevalent use. This cross-sectional study addresses this gap by investigating bakhour exposure and respiratory diseases. Methods: This was descriptive cross-sectional study conducted in Jazan area, Saudi Arabia, from October 2023 to March 2024. A total of 1612 participants age more than 18 years, both gender and resident of Jazan Area were included. Those aged less than 18 years were excluded. SPSS v 26 was used for data analysis. Results: The sample (n=1612) had a mean age of 29±11 years and was 63% female. Bakhour use was nearly universal (98%), especially using coal (73%). Higher bakhour frequency significantly associated with increased cough (p<0.01) and dyspnea (p<0.01). Certain bakhour types linked to greater allergic rhinitis prevalence (p<0.01). Regression analysis revealed cough during bakhour use worsened respiratory health (increased respiratory score) by 3.89 times (95% CI 1.13-6.64; p=0.006) while dyspnea increased the score by 7.48 times (95% CI 4.70-10.25; p<0.001). Conclusion: This study provides valuable insights into the association between Bakhour use and respiratory health in the Jazan region. The findings emphasize the need for further research and public health interventions to mitigate potential respiratory risks associated with Bakhour use.

17.
Chemosphere ; 362: 142751, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960047

ABSTRACT

Elevated ozone (eO3) concentrations pose a threat to insect populations by potentially altering their behaviour and physiology. This study investigates the effects of eO3 concentrations on the mountain pine beetle which is a major tree-killing species of conifers in northwestern North America. We are particularly interested in understanding the effects of eO3 concentrations on beetle behaviour and physiology and possible transgenerational impacts on bark beetle broods. We conducted O3-enrichment experiments in a controlled laboratory setting using different O3 concentrations (100-200 ppb; projected for 2050-2100) and assessed various beetle responses, including CO2 respiration, mating behaviour, survival probability, locomotion, and attraction behaviour. Transgenerational impacts on the first and second generations were also analyzed by studying brood morphology, mating behaviour, survival, and pheromone production. We found that beetles exposed to eO3 concentrations had shorter oviposition galleries and reduced brood production. Beetle pheromones were also degraded by eO3 exposure. However, exposure to eO3 also prompted various adaptive responses in beetles. Despite reduced respiration, eO3 improved locomotor activity and the olfactory response of beetles. Surprisingly, beetle survival probability was also improved both in the parents and their broods. We also observed transgenerational plasticity in the broods of eO3-exposed parents, suggesting potential stress resistance mechanisms. This was evident by similar mating success, oviposition gallery length, and brood numbers produced in both control and eO3 concentration treatments. This study demonstrates the sensitivity of mountain pine beetles to increased O3 concentrations, contributing crucial insights into the ecological implications of eO3 concentrations on their populations. Overall, the outcome of this study contributes to informed climate change mitigation strategies and adaptive management practices for the development of resilient forests in response to emerging forest insect pests worldwide.

18.
Sci Total Environ ; 946: 174375, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960175

ABSTRACT

Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China. The outcomes indicated that hydrochemical component in the water bodies of the study area is mainly derived from the dissolution of silicate rocks, carbonate rocks and sulfate minerals as well as the oxidation of sulfides. The human and agricultural wastewater, soil nitrogen, and fertilizers were the predominant inputs sources of nitrate to the mine water environment; the predominant inputs sources of sulfide were mineral oxidation, evaporite dissolution, atmospheric deposition, and sewage. Groundwater is mainly recharged from atmospheric precipitation, and surface water is closely hydraulically connected to groundwater. Nitrogen and oxygen isotope composition and water chemistry indicative of nitrification dominate the nitrogen cycle in the study area. The oxidation of pyrite and bacterial sulfate reduction (SRB) had no significant impact on the stable isotopes of groundwater. The results of this study demonstrate the inputs of different sources to nitrate and sulfate in karst mines and associated transformation processes. The results of this study can assist in the conservation of groundwater quality in mining areas and can act as a reference for future related studies.

19.
Heliyon ; 10(11): e32554, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961990

ABSTRACT

Microplastics pose significant challenges on a global scale. In Ghana, these tiny pollutants infiltrate diverse ecosystems such as coastal areas, rivers, lakes, and forests, vital to the nation's economy and social well-being. This review examines the current depth of knowledge in research and the escalating concern of microplastics, identifying significant gaps in research and understanding. The findings highlight the limited understanding of the extent and distribution of microplastic pollution across different environmental compartments, primarily focusing on coastal environments. Additionally, detection and quantification techniques for microplastics face several complexities and limitations in the Ghanaian context due to constraints such as infrastructure, resources, and expertise. Despite some research efforts, particularly along the coastline, there is still a distinct lack of attention in various regions and ecosystems within Ghana. This imbalance in research focus hinders the understanding and effective mitigation of microplastics in the country. This therefore necessitates the implementation of systematic policy frameworks, emphasizing the importance of recycling and upcycling as effective strategies to address the challenges of microplastics in Ghana with more targeted research and public engagement. This review serves as a call to action for a strategic approach to research and policy-making on microplastic research and pollution in Ghana.

20.
Environ Res Health ; 2(3): 035007, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38962451

ABSTRACT

Air pollution exposure is associated with adverse respiratory health outcomes. Evidence from occupational and community-based studies also suggests agricultural pesticides have negative health impacts on respiratory health. Although populations are exposed to multiple inhalation hazards simultaneously, multidomain mixtures (e.g. environmental and chemical pollutants of different classes) are rarely studied. We investigated the association of ambient air pollution-pesticide exposure mixtures with urinary leukotriene E4 (LTE4), a respiratory inflammation biomarker, for 75 participants in four Central California communities over two seasons. Exposures included three criteria air pollutants estimated via the Community Multiscale Air Quality model (fine particulate matter, ozone, and nitrogen dioxide) and urinary metabolites of organophosphate (OP) pesticides (total dialkyl phosphates (DAPs), total diethyl phosphates (DE), and total dimethyl phosphates (DM)). We implemented multiple linear regression models to examine associations in single pollutant models adjusted for age, sex, asthma status, occupational status, household member occupational status, temperature, and relative humidity, and evaluated whether associations changed seasonally. We then implemented Bayesian kernel machine regression (BKMR) to analyse these criteria air pollutants, DE, and DM as a mixture. Our multiple linear regression models indicated an interquartile range (IQR) increase in total DAPs was associated with an increase in urinary LTE4 in winter (ß: 0.04, 95% CI: [0.01, 0.07]). Similarly, an IQR increase in total DM was associated with an increase in urinary LTE4 in winter (ß:0.03, 95% CI: [0.004, 0.06]). Confidence intervals for all criteria air pollutant effect estimates included the null value. BKMR analysis revealed potential non-linear interactions between exposures in our air pollution-pesticide mixture, but all confidence intervals contained the null value. Our analysis demonstrated a positive association between OP pesticide metabolites and urinary LTE4 in a low asthma prevalence population and adds to the limited research on the joint effects of ambient air pollution and pesticides mixtures on respiratory health.

SELECTION OF CITATIONS
SEARCH DETAIL
...