Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.163
Filter
1.
Proc Natl Acad Sci U S A ; 121(41): e2413241121, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39361652

ABSTRACT

Gut microbiota plays a vital role in host metabolism; however, the influence of gut microbes on polyamine metabolism is unknown. Here, we found germ-free models possess elevated polyamine levels in the colon. Mechanistically, intestinal Lactobacillus murinus-derived small RNAs in extracellular vesicles down-regulate host polyamine metabolism by targeting the expression of enzymes in polyamine metabolism. In addition, Lactobacillus murinus delays recovery of dextran sodium sulfate-induced colitis by reducing polyamine levels in mice. Notably, a decline in the abundance of small RNAs was observed in the colon of mice with colorectal cancer (CRC) and human CRC specimens, accompanied by elevated polyamine levels. Collectively, our study identifies a specific underlying mechanism used by intestinal microbiota to modulate host polyamine metabolism, which provides potential intervention for the treatment of polyamine-associated diseases.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactobacillus , Polyamines , Animals , Polyamines/metabolism , Mice , Lactobacillus/metabolism , Lactobacillus/genetics , Humans , Swine , Colitis/metabolism , Colitis/microbiology , Colitis/chemically induced , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Dextran Sulfate , Colon/metabolism , Colon/microbiology , Extracellular Vesicles/metabolism
2.
Chemosphere ; : 143438, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369751

ABSTRACT

The increasing prevalence and severity of abiotic stresses on plants due to climate change is among the crucial issues of decreased crop productivity worldwide. These stresses affect crop productivity and pose a challenge to food security. Polyamines (Pas) and hydrogen peroxide (H2O2) could play a vital role to minimize the impact of several abiotic stresses on the plants. Pas are small molecules that regulate various physiological and developmental processes in plants and confer stress tolerance and protection against dehydration and cellular damage. Pas also interact with plant growth regulators and participate in various signaling routes that can mediate stress response. H2O2 on the other hand, acts as a signaling agent and plays a pivotal part in controlling crop growth and productivity. It can trigger oxidative damage at high levels but acts as a stress transducer and regulator at low concentrations. H2O2 is involved in stress defense mechanisms and the activation of genes involved in conferring tolerance. Therefore, the main focus of this paper is to explore roles of Pas and H2O2 in plant responses to various abiotic stress, highlighting their involvement in stress retaliation and signaling routes. Emphasis has been placed on understanding how Pas and H2O2 function and interact with other signaling molecules. Also, interaction of Pas and H2O2 with calcium ions, abscisic acid and nitrogen has been discussed, along with activation of MAPK cascade. This additive understanding could contribute to adopt strategies to improve crop productivity and enhance plant resilience to environmental challenges.

3.
J Insect Sci ; 24(5)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39382172

ABSTRACT

Dietary supplementation has been proposed as a sustainable way to improve the health and resilience of honey bees (Apis mellifera, L.), as the decline in their numbers in recent decades has raised scientific, environmental, and economic concerns. Spermidine, a natural polyamine, has been shown to be a promising substance for honey bee supplementation, as its health-promoting effects have been demonstrated in numerous studies and in different organisms. As already shown, supplementation with spermidine at a certain concentration prolonged lifespan, reduced oxidative stress, and increased antioxidative capacity in honey bees. The aim of the present study was to investigate whether spermidine supplementation affects gene expression and/or enzyme activity of antioxidative and detoxification enzymes and immune response markers in honey bee workers. The different gene expression and enzyme activity patterns observed in abdominal and head tissues in response to spermidine supplementation suggest tissue-specific and concentration-dependent effects. In addition, the immune response markers suggest that spermidine has the ability to boost honey bee immunity. The observed changes make a valuable contribution to understanding the molecular mechanisms by which spermidine may exert its beneficial effects on the bee's health and lifespan. These results support the idea of the use of spermidine supplementation to promote bee health and resilience to environmental stressors, emphasizing that the dose must be carefully chosen to achieve a balance between the pro- and antioxidant effects of spermidine.


Subject(s)
Dietary Supplements , Spermidine , Animals , Bees/drug effects , Bees/immunology , Spermidine/pharmacology , Dietary Supplements/analysis , Antioxidants/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics
4.
Food Chem ; 463(Pt 3): 141408, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39340906

ABSTRACT

Wheat germ is one of the richest natural sources of polyamines, especially spermidine. Cell proliferation property of polyamines has given them inductive effects in the reduction of a variety of chronic diseases and fertility enhancement. Preparing a polyamine-rich extract powder from wheat germ for use in supplements is the aim of the present study. For the first time, the effects of three independent variables of clean-up replicate (A), extraction time (B), and solid-to-liquid ratio (C) on the response of total spermidine content (Y) were investigated using a central composite design optimizing polyamine enrichment. The optimal extraction conditions were 7 h, 3 clean-up replicates, and 1:4 solid to liquid ratio. This is the first production report of spermidine-enriched powder for encapsulation purposes. To obtain an acceptable rheological property, the polyamine-enriched extract was spray dried together with a selected group of excipients, among which glucose was evidenced as the best choice based on encapsulation properties.

5.
Cells ; 13(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273047

ABSTRACT

Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.


Subject(s)
Fertilization , Ovum , Sea Urchins , Animals , Fertilization/drug effects , Sea Urchins/drug effects , Sea Urchins/metabolism , Ovum/metabolism , Ovum/drug effects , Male , Polyamines/metabolism , Polyamines/pharmacology , Female , Spermatozoa/metabolism , Spermatozoa/drug effects , Calcium Signaling/drug effects , Sperm-Ovum Interactions/drug effects , Calcium/metabolism
6.
Mol Plant Pathol ; 25(9): e70003, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235122

ABSTRACT

Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.


Subject(s)
Oxidation-Reduction , Polyamines , Polyamines/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Cyclic AMP/metabolism , Saccharum/microbiology , Gene Expression Regulation, Fungal , Ustilaginales/pathogenicity , Autophagy
7.
Theriogenology ; 229: 202-213, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217649

ABSTRACT

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT: Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION: This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.


Subject(s)
Gonadotropin-Releasing Hormone , Sexual Maturation , Animals , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Mice , Sexual Maturation/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Polyamines/metabolism , Aging , Ovary/drug effects , Ovary/metabolism , Gene Expression Regulation/drug effects
8.
Polymers (Basel) ; 16(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274128

ABSTRACT

Mercury, a highly toxic metal and pollutant, poses a significant risk to human health and the environment. This study describes the synthesis of a new nitrogen-doped heteroaromatic hyper-crosslinked polyamine (HCPA) via the polycondensation of 2,6-diaminopyrazine and tris(4-formylphenyl)amine for the efficient removal of mercury ions from aqueous solutions. The HCPA polymer was characterized by solid-state 13C-NMR and FT-IR spectroscopy. A powder X-ray diffraction and thermogravimetric analysis showed that the polymer was semicrystalline in nature and stable up to 500 °C. Adsorption isotherms indicated that mercury adsorption occurred via mono- and multilayer adsorption by HCPA, as depicted by the Langmuir, Freundlich, and Redlich-Peterson isotherm models, with a maximum adsorption capacity of qm = 333.3 mg/g. Adsorption kinetic models suggested that the adsorption process was fast and effective, reaching equilibrium within 20 min. Thermodynamics of the adsorption process revealed that it was endothermic and spontaneous in nature due to the positive ΔH0 of 48 kJ/mol and negative ΔG0 values of -4.5 kJ/mol at 293 K. Wastewater treatment revealed 98% removal of mercury indicating the selective nature of HCPA. Finally, HCPA exhibited excellent performance and regeneration up to three cycles, demonstrating its great potential as an adsorbent for environmental remediation applications.

9.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275124

ABSTRACT

Polyamines play a pivotal role in cancer cell proliferation. The excessive polyamine requirement of these malignancies is satisfied through heightened biosynthesis and augmented extracellular uptake via the polyamine transport system (PTS) present on the cell membrane. Meanwhile, photodynamic therapy (PDT) emerges as an effective anti-cancer treatment devoid of drug resistance. Recognizing these intricacies, our study devised a novel polyamine-derived photosensitizer (PS) for targeted photodynamic treatment, focusing predominantly on pancreatic cancer cells. We synthesized and evaluated novel spermine-derived fluorescent probes (N2) and PS (N3), exhibiting selectivity towards pancreatic cancer cells via PTS. N3 showed minimal dark toxicity but significant phototoxicity upon irradiation, effectively causing cell death in vitro. A significant reduction in tumor volume was observed post-treatment with no pronounced dark toxicity using the pancreatic cancer CDX mouse model, affirming the therapeutic potential of N3. Overall, our findings introduce a promising new strategy for cancer treatment, highlighting the potential of polyamine-derived PSs in PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Polyamines , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Animals , Mice , Humans , Polyamines/chemistry , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays
10.
Nutrients ; 16(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39275210

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Early detection and the modification of risk factors, such as diet, can reduce its incidence. Among food components, polyamines are important for maintaining gastrointestinal health and are metabolites of gut microbiota. Their disruption is linked to CRC, making polyamines a potential marker of the disease. This study analyzed the relationship between dietary components, including polyamines, and the presence of polyamines in feces to determine whether their presence could contribute to predicting the occurrence of colorectal lesions in patients. In total, 59 participants of both sexes (aged 50 to 70 years) who had undergone colonoscopy screening for CRC (18 without and 41 with colorectal lesions) participated in the study. A nutritional survey and determination of fecal polyamine content were performed. Specific dietary components and putrescine levels were higher in patients with colorectal lesions. The diet ratio of putrescine-spermidine and the fecal content of N-acetyl putrescine and cadaverine were elevated in patients with precancerous lesions and adenocarcinomas, showing a potential predictive value for the presence of colorectal lesions. These findings suggest that N-acetyl putrescine and cadaverine could be complementary markers for the diagnosis of suspected colorectal lesions.


Subject(s)
Cadaverine , Colorectal Neoplasms , Diet , Feces , Polyamines , Putrescine , Humans , Male , Middle Aged , Female , Feces/chemistry , Aged , Putrescine/analysis , Putrescine/metabolism , Cadaverine/analysis , Cadaverine/metabolism , Polyamines/analysis , Polyamines/metabolism , Colonoscopy , Early Detection of Cancer/methods
11.
Aging Cell ; 23(10): e14324, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39236298

ABSTRACT

Aged hematopoietic stem cells (HSCs) show reduced reconstitution potential, limiting their use in transplantation settings in the clinic. We demonstrate here that exposure of aged HSCs ex vivo to a pH of 6.9 instead of the commonly used pH of 7.4 results in enhanced HSCs potential that is consistent with rejuvenation, including attenuation of the myeloid bias of aged HSC and restoration of a youthful frequency of epigenetic polarity. Rejuvenation of aged HSCs by pH 6.9 is, at least in part, due to alterations in the polyamine/methionine pathway within pH 6.9 HSCs, and consequently, attenuation of the production of spermidine also attenuated aging of HSCs. Exposure of aged HSCs to pH 6.9, or pharmacological targeting of the polyamine pathway, might thus extend the use of HSCs from aged donors for therapeutic applications.


Subject(s)
Hematopoietic Stem Cells , Rejuvenation , Hydrogen-Ion Concentration , Animals , Hematopoietic Stem Cells/metabolism , Rejuvenation/physiology , Mice , Cellular Senescence/drug effects , Mice, Inbred C57BL , Polyamines/metabolism , Polyamines/pharmacology , Myeloid Cells/metabolism
12.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125742

ABSTRACT

Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.


Subject(s)
Homeostasis , Neoplasms , Polyamines , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Polyamines/metabolism , Animals , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125743

ABSTRACT

The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.


Subject(s)
Eukaryotic Translation Initiation Factor 5A , Lysine , Peptide Initiation Factors , RNA-Binding Proteins , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Lysine/metabolism , Lysine/analogs & derivatives , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Biosynthesis , Mice
14.
Chemistry ; 30(49): e202401071, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39140791

ABSTRACT

Polyamines are essential analytes due to their critical role in various biological processes and human health in general. Due to their role as regulators for cell growth and proliferation (putrescine and spermine), as neuroprotectors, gero-, and cardiovascular protectors (spermidine), and as bacterial growth indicators (cadaverine), rapid, simple, and cost-effective methods for polyamine detection in biofluids are in demand. The present study focuses on the development and investigation of self-assembled and fluorescent host⋅dye chemo-sensors based on sulfonated pillar[5]arene for the specific detection of polyamines. Binding studies, as well as stability and functionality assessments of the turn-on chemosensors for selective polyamine detection in saline and biologically relevant media, are shown. Furthermore, the practical applicability of the developed chemo-sensors is demonstrated in biofluids such as human urine and saliva.


Subject(s)
Cadaverine , Calixarenes , Fluorescent Dyes , Saliva , Spermidine , Spermine , Spermidine/analysis , Spermidine/chemistry , Humans , Spermine/analysis , Spermine/chemistry , Cadaverine/analysis , Fluorescent Dyes/chemistry , Calixarenes/chemistry , Saliva/chemistry , Spectrometry, Fluorescence/methods , Quaternary Ammonium Compounds/chemistry , Fluorescence , Saline Solution/chemistry
15.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39123088

ABSTRACT

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Subject(s)
Amine Oxidase (Copper-Containing) , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors , Animals , Rats , Oxidation-Reduction/drug effects , Deamination , Amine Oxidase (Copper-Containing)/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Polyamine Oxidase , Putrescine/metabolism , Putrescine/pharmacology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Cell-Free System , Liver/metabolism , Liver/drug effects , Polyamines/metabolism , Spermine/metabolism , Spermine/pharmacology , Spermidine/metabolism , Male , Nitrogen/metabolism , Rats, Wistar
16.
J Agric Food Chem ; 72(34): 18942-18956, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39145497

ABSTRACT

Not only free amino acids and normal short-chain peptides but also modified amino acids, such as N-acetyl- and N-formyl amino acids, monoamines, polyamines, and modified peptides, such as isomerized aspartyl peptides, pyroglutamyl peptides, and diketopiperazines, were identified in Japanese fermented soy paste (miso) prepared using different fungal starters, rice, barley, and soybean-koji. One hour after oral administration of water extract of soybean-koji miso to rats, the modified peptides increased significantly in the lumen upon the ingestion, while the normal peptides did not. In the blood from the portal vein and abdominal vena cava, 17 and 15 diketopiperazines, 16 and 12 isomerized aspartyl peptides, and 2 and 1 pyroglutamyl peptides significantly increased to approximately 10-400 nM, respectively. The modified peptides, which increased in rat blood, showed angiotensin-converting enzyme (ACE) inhibitory activity in a dose-dependent manner, indicating multiple ACE inhibitory peptides with high bioavailability in miso. Among them, l-ß-Asp-Pro showed the highest ACE inhibitory activity (IC50 4.8 µM).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Biological Availability , Fermentation , Peptides , Soy Foods , Animals , Male , Rats , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Glycine max/chemistry , Japan , Peptides/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Rats, Sprague-Dawley , Soy Foods/analysis
17.
Zoolog Sci ; 41(4): 329-341, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093279

ABSTRACT

Enucleated erythrocytes are characteristic of adult mammals. In contrast, fish, amphibians, reptiles, birds, and fetal mammals possess nucleated erythrocytes in their circulation. Erythroid maturation is regulated by erythropoietin (EPO) and its receptor (EPOR), which are conserved among vertebrates. In mammals, EPOR on the erythroid progenitor membrane disappears after terminal differentiation. However, in western clawed frog, Xenopus tropicalis, mature erythrocytes maintain EPOR expression, suggesting that they have non-canonical functions of the EPO-EPOR axis rather than proliferation and differentiation. In this study, we investigated the non-canonical functions of EPOR in Xenopus mature erythrocytes. EPO stimulation of peripheral erythrocytes did not induce proliferation but induced phosphorylation of intracellular proteins, including signal transducer and activator of transcription 5 (STAT5). RNA-Seq analysis of EPO-stimulated peripheral erythrocytes identified 45 differentially expressed genes (DEGs), including cytokine inducible SH2 containing protein gene (cish) and suppressor of cytokine signaling 3 gene (socs3), negative regulators of the EPOR-Janus kinase (JAK)-STAT pathway. These phosphorylation studies and pathway analysis demonstrated the activation of the JAK-STAT pathway through EPO-EPOR signaling in erythrocytes. Through comparison with EPO-responsive genes in mouse erythroid progenitors obtained from a public database, we identified 31 novel EPO-responsive genes indicating non-canonical functions. Among these, we focused on ornithine decarboxylase 1 gene (odc1), which is the rate-limiting enzyme in polyamine synthesis and affects hematopoietic progenitor differentiation and the endothelial cell response to hypoxic stress. An EPO-supplemented culture of erythrocytes showed increased odc1 expression followed by a decrease in polyamine-rich erythrocytes, suggesting EPO-responsive polyamine excretion. These findings will advance our knowledge of the unknown regulatory systems under the EPO-EPOR axis and functional differences between vertebrates' nucleated and enucleated erythrocytes.


Subject(s)
Erythrocytes , Erythropoietin , Receptors, Erythropoietin , Xenopus , Animals , Erythropoietin/metabolism , Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Receptors, Erythropoietin/genetics , Erythrocytes/metabolism , Signal Transduction , Gene Expression Regulation , Erythroblasts/metabolism
18.
Methods Enzymol ; 702: 51-74, 2024.
Article in English | MEDLINE | ID: mdl-39155120

ABSTRACT

S-adenosylmethionine (SAM) is most widely known as the biological methylating agent of methyltransferases and for generation of radicals by the iron-sulfur dependent Radical SAM enzymes. SAM also serves as a substrate in biosynthetic reactions that harvest the aminobutyrate moiety of the methionine, producing methylthioadenosine as a co-product. These reactions are found in the production of polyamines such as spermine, siderophores derived from nicotianamine, and opine metallophores staphylopine and pseudopaline, among others. This procedure defines a highly sensitive, continuous fluorescence assay for the determination of steady state kinetic parameters for enzymes that generate the co-product methylthioadenosine.


Subject(s)
Enzyme Assays , S-Adenosylmethionine , Enzyme Assays/methods , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/chemistry , Kinetics , Spectrometry, Fluorescence/methods , Alkyl and Aryl Transferases
19.
Cell Oncol (Dordr) ; 47(5): 1845-1861, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39115605

ABSTRACT

PURPOSE: Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma. METHODS: In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance. RESULTS: Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO. CONCLUSION: Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an "One-two Punch" therapy of metastatic and recurrent osteosarcoma.


Subject(s)
Adaptor Proteins, Signal Transducing , Bone Neoplasms , Glutamine , Osteosarcoma , Transcription Factors , YAP-Signaling Proteins , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/drug therapy , Glutamine/metabolism , Humans , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Mice , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects
20.
R Soc Open Sci ; 11(6): 231979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39092147

ABSTRACT

Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.

SELECTION OF CITATIONS
SEARCH DETAIL