Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.527
Filter
1.
J Hazard Mater ; 477: 135366, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39088943

ABSTRACT

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.

2.
Food Chem ; 460(Pt 2): 140660, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39089029

ABSTRACT

This study utilized computational simulation and surface molecular imprinting technology to develop a magnetic metal-organic framework molecularly imprinted polymer (Fe3O4@ZIF-8@SMIP) capable of selectively recognizing and detecting multiple fluoroquinolones (FQs). The Fe3O4@ZIF-8@SMIP material was synthesized using the "common" template-ofloxacin, identified by computational simulation, demonstrating notable adsorption capacity (88.61-212.93 mg g-1) and rapid mass-transfer features (equilibration time: 2-3 min) for all tested FQs, consistent with Langmuir adsorption model. Subsequently, this material was employed as a magnetic solid-phase-extraction adsorbent for adsorption and detection of multiple FQs by combining with high performance liquid chromatography. The developed method exhibited good linearity for various FQs within the concentration range of 0.1-500 µg L-1, with low limit of detection (0.0605-0.1529 µg L-1) and limit of quantitation (0.2017-0.5097 µg L-1). Satisfactory recoveries (88.38-103.44%) were obtained when applied to spiked food samples, demonstrating the substantial potential of this Fe3O4@ZIF-8@SMIP material for rapid enrichment and identification for multiple FQs residues.

3.
Ann Pharm Fr ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089365

ABSTRACT

Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremors, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves into the potential of drug delivery systems based on chitosan (CS) to treat PD.

4.
Int J Biol Macromol ; : 134341, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089554

ABSTRACT

The Mg-ion battery faces significant limitations due to its liquid electrolyte, which suffers from inherent issues such as leakage and the growth of Mg dendrites. In contrast, gel polymer electrolytes (GPEs) offer heightened safety, a wide voltage window, and excellent flexibility, making them a promising alternative with outstanding electrochemical performance. In this study, a cyano-modified cellulose (CEC) GPE was engineered to aim at enhancing ion transportation and promoting uniform ion-flux through interactions between N and Mg2+ ions. The resulting CEC-based GPE demonstrated a high ionic conductivity of 1.73 mS cm-1 at room temperature. Furthermore, it exhibited remarkable Mg plating/stripping performance (coulombic efficiency ~96.7 %) and compatibility with electrodes. Importantly, when employed in a Mo6S8//Mg battery configuration, the CEC GPE displayed exceptional cycle stability, with virtually no degradation observed even after 650 cycles at 1C, thereby significantly advancing Mg-ion battery technology due to its excellent electrochemical properties. This study provides valuable insights into the molecular engineering of cellulose-based GPEs.

5.
Angew Chem Int Ed Engl ; : e202410885, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087846

ABSTRACT

To access degradable polyolefin plastic, non-alternating copolymerization of ethylene (E) and carbon monoxide (CO) for producing polyethylene (PE) with in-chain ketones is particularly appealing; however, it still presents significant challenges such as molecular weight modulation (hydrogen response) and chain endgroup control (functional terminal). In this study, we achieved hydrogen-controlled E/CO non-alternating copolymerization using late transition metal catalysts. This process results in linear PEs containing the desired non-alternating in-chain keto groups (1.0-9.3 mol%) and with tunable molecular weights ranging from 43 to 195 kDa. In this reaction, H2 serves as a chain transfer agent, modulating the polymer's molecular weight, forming unique aldehyde endgroups and eliminating usual olefinic endgroups; CO undergoes non-alternating insertion into the PE chain, resulting in a strictly non-alternating structure (> 99%) for the keto-PE. The dispersed incorporation of in-chain keto groups retains bulk properties of PE and makes PE susceptible to photodegradation, which produces significantly lower molecular weight polymers and oligomers with unambiguous vinyl and acetyl terminals.

6.
Curr Med Chem ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39092735

ABSTRACT

Polymeric micelles are becoming the method of choice for a nano-drug delivery system, especially in colorectal cancer treatment. These tiny structures have become popular for their amazing qualities that make drug delivery more efficient and therapies better. Colorectal cancer, also known as colon cancer, is one of the most common and deadly cancers in the world. Traditional chemotherapy is good, but it has big downsides, like harming other parts of the body and making people sick all over. Polymeric micelles give a new way to fix these problems by being easier on the body, breaking down naturally, and staying in the blood longer. The polymeric micelles, which are loaded with drugs, are sheltered within the tumor, which leads to a reduction in off-site effects and an increase in the targeting and accumulation of chemotherapeutics at the cancer site. This review paper elaborates on the current status of polymeric micelles as a method for nano-drug delivery for chemotherapy, emphasizing their efficacy in managing cancer. The paper also talks about the various types of copolymers that are used to create polymeric micelles, the different types of micelles, their physicochemical properties, the preparation process, characterization, and their application in cancer diagnostics.

7.
Angew Chem Int Ed Engl ; : e202410519, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090074

ABSTRACT

Carbon dots (CDs), as a kind of zero-dimensional nanomaterials, have been widely synthesized by bottom-up methods from various precursors. However, the formation mechanism is still unclear and controversial, which also brings difficulty to the regulation of structures and properties. Only some tentative formation processes were postulated by analyzing the products obtained at different reaction times and temperatures. Here, the effect of crosslinking on the formation of carbonized polymer dots (CPDs) is explored. Crosslinking-induced nucleation and carbonization (CINC) is proposed as the driving force for the formation of CPDs. Under hydrothermal synthesis, the precursors are initiated to polymerize and crosslink. The crosslinking brings higher hydrophobicity to generate the hydrophilic/hydrophobic microphase separation, which promotes dehydration and carbonization resulting in the formation of CPDs. Based on the principle of CINC, the influence factors of size are also revealed. Moreover, the dissipative particle dynamics (DPD) simulation is employed to support this formation mechanism. This concept of CINC will bring light to the formation process of CPDs, as well as facilitate the regulation of CPDs' size and photoluminescence.

8.
Adv Mater ; : e2311841, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091048

ABSTRACT

Despite the substantial advancement in developing various hydrogel microparticle (HMP) synthesis methods, emulsification through porous medium to synthesize functional hybrid protein-polymer HMPs has yet to be addressed. Here, the aided porous medium emulsification for hydrogel microparticle synthesis (APME-HMS) system, an innovative approach drawing inspiration from porous medium emulsification is introduced. This method capitalizes on emulsifying immiscible phases within a 3D porous structure for optimal HMP production. Using the APME-HMS system, synthesized responsive bovine serum albumin (BSA) and polyethylene glycol diacrylate (PEGDA) HMPs of various sizes are successfully synthesized. Preserving protein structural integrity and functionality enable the formation of cytochrome c (cyt c) - PEGDA HMPs for hydrogen peroxide (H2O2) detection at various concentrations. The flexibility of the APME-HMS system is demonstrated by its ability to efficiently synthesize HMPs using low volumes (≈50 µL) and concentrations (100 µm) of proteins within minutes while preserving proteins' structural and functional properties. Additionally, the capability of the APME-HMS method to produce a diverse array of HMP types enriches the palette of HMP fabrication techniques, presenting it as a cost-effective, biocompatible, and scalable alternative for various biomedical applications, such as controlled drug delivery, 3D printing bio-inks, biosensing devices, with potential implications even in culinary applications.

9.
Sci Rep ; 14(1): 18373, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112525

ABSTRACT

Rare earth metals (REMs), such as Dysprosium (Dy) and Ytterbium (Yb), have experienced unprecedented demand in recent times due to their applications in high-end technologies. REMs are found only in select geographic locations placing tremendous economic constraints on their use. In this work, we have developed Gum Acacia-grafted hydrogels (GmAc-FluoroTerPs) that are capable of selective detection and capture of Dy and Yb. The intrinsically blue fluorescent polymer hydrogel GmAc-FluoroTerP has been optimized for Dy(III) and Yb(III) specific quenching, enabling limit of detection of the REMs at 0.13 nM and 60.8 pM, respectively. A comprehensive structural characterization of the fluorescent hydrogel has been performed via NMR, FTIR, XPS, EPR, TGA, XRD, TEM, SEM, EDX, TCSPC, and DLS. In addition to an in situ generated fluorophore, GmAc-FluoroTerP displays a distinctive aggregation induced emission enhancement in mixed solvents. The complexation of Dy(III)/Yb(III) with GmAc-FluoroTerP hydrogel has been characterized by XPS, TCSPC, and logic gate analyses, and the adsorptive capacity for Dy(III) and Yb(III) are found to be best reported till date as 125.57 mg g-1 and 102.27 mg g-1, respectively. Desorption at acidic pH allows recovery of the REMs. We also report semiconducting behaviour of the native fluorescent hydrogel, that is enhanced upon adsorptive capture of Dy(III) and Yb(III), with calculated band gaps at 1.37, 0.77, and 0.49 eV, respectively. The convergent sensing, capture, and reuse of Dy(III) and Yb(III) presented in this work promises a hitherto unreported template for application on other REMs.

10.
Sci Rep ; 14(1): 18288, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112559

ABSTRACT

In this brief report, we present laser induced breakdown spectroscopy (LIBS) evidence of deuterium (D) production in a 3:1 urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) polymer doped with resonant gold nanorods, induced by intense, 40 fs laser pulses. The in situ recorded LIBS spectra revealed that the D/(2D + H) increased to 4-8% in the polymer samples in selected events. The extent of transmutation was found to linearly increase with the laser pulse energy (intensity) between 2 and 25 mJ (up to 3 × 1017W/cm2). The observed effect is attributed only to the field enhancing effects due to excited localized surface plasmons on the gold nanoparticles.

11.
Cancer Lett ; 599: 217152, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094825

ABSTRACT

Monoclonal antibodies targeting immune checkpoints have been widely applied in gastrointestinal cancer immunotherapy. However, systemic administration of various monoclonal antibodies does not often result in sustained effects in reversing the immunosuppressive tumor microenvironment (TME), which may be due to the spatiotemporal dynamic changes of immune checkpoints. Herein, we reported a novel immune checkpoint reprogramming strategy for gastrointestinal cancer immunotherapy. It was achieved by the sequential delivery of siPD-L1 (siRNA for programmed cell death ligand 1) and pOX40L (plasmid for OX40 ligand), which were complexed with two cationic polymer brush-grafted carbon nanotubes (dense short (DS) and dense long (DL)) designed based on the structural characteristics of nucleic acids and brush architectures. Upon administrating DL/pOX40L for the first three dosages, then followed by DS/siPD-L1 for the next three dosages to the TME, it upregulated the stimulatory checkpoint OX40L on dendritic cells (DCs) and downregulated inhibitory checkpoint PD-L1 on tumor cells and DCs in a sequential reprogramming manner. Compared with other combination treatments, this sequential strategy drastically boosted the DCs maturation, and CD8+ cytotoxic T lymphocytes infiltration in tumor site. Furthermore, it could augment the local antitumor response and improve the T cell infiltration in tumor-draining lymph nodes to reverse the peripheral immunosuppression. Our study demonstrated that sequential nucleic acid delivery strategy via personalized nanoplatforms effectively reversed the immunosuppression status in both tumor microenvironment and peripheral immune landscape, which significantly enhanced the systemic antitumor immune responses and established an optimal immunotherapy strategy against gastrointestinal cancer.

12.
Sci Rep ; 14(1): 18122, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103363

ABSTRACT

In this study, conducting polymers composed of polyaniline hydrochloric acid (PANI/HCl) with varying concentrations of a newly synthesized azo-azomethine dye (4-(((Z)-2-hydroxy-5-((Z)-(4-hydroxyphenyl)diazenyl)-3-methoxybenzylidene)amino)benzoic acid) were synthesized using a chemical oxidative polymerization technique. The synthesized azo-azomethine was characterized by FTIR, 1H-NMR, 13C-NMR, and HRMS. The effects of varying the concentration of the dopant azo-azomethine in PANI/HCl on its optical, structural, thermal, and electrical properties were examined using FTIR, UV-Vis, XRD, FESEM, TEM, cyclic voltammetry, and electrical impedance spectra. The results indicate that the optical, direct, and indirect band gaps of the doped polymers decreased from 4.48 and 3.96 eV to 3.91 and 2.49 eV, respectively. The crystalline structure and phase transitions in the doped polymers were examined using X-ray diffraction. Cyclic voltammetry demonstrated that the doped polymers exhibited higher electrochemical conductivity compared to the pure polymer, with the specific capacitance increasing from 161.17 to 816.9 F/g. The electrical impedance spectra revealed the bulk resistance and conductivity of the material. Among all the doped polymers, PANI/HCl with an azo-azomethine concentration of 5 × 10-5 M exhibited lower bulk resistance (10 Ω) and higher electrical conductivity (σ = 50.09 × 10-3 S cm-1).

13.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 816-819, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108786

ABSTRACT

The reaction of cadmium iodide with 3-amino-pyrazole (3-apz) in ethano-lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di-iodido-cadmium(II)]-bis-(µ-3-amino-1H-pyrazole)-κ2 N 2:N 3;κ2 N 3:N 2], [CdI2(C3H5N3)2] n or [CdI2(3-apz)2] n . Its asymmetric unit consists of a half of a Cd2+ cation, an iodide anion and a 3-apz mol-ecule. The Cd2+ cations are coordinated by two iodide anions and two 3-apz ligands, generating trans-CdN4I2 octa-hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol-ecules and iodide anions of neighboring chains are linked through inter-chain hydrogen bonds into a di-periodic network. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu-anti-tative contributions of the weak inter-molecular contacts.

14.
J Appl Crystallogr ; 57(Pt 4): 945-954, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108813

ABSTRACT

Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.

15.
Bioelectrochemistry ; 160: 108786, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39111272

ABSTRACT

MicroRNA, as a distinctive biomarker, plays a crucial role in the early prognosis and diagnosis of numerous severe diseases. However, due to its inherent properties such as low abundance, small size, and high sequence similarity, the sensitive and accurate detection of microRNA remains a major challenge. Herein, a dual-mode electrochemical biosensing platform was developed for microRNA detection, based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposite. The GO-Fe3O4/PEDOT composite demonstrated a porous microstructure, outstanding conductivity, and robust catalytic activity towards nitrite. It was electrodeposited onto the electrode surface in a one-step process using the cyclic voltammetry method (CV). The microRNA biosensor was obtained by anchoring DNA with amino groups to the GO-Fe3O4/PEDOT layer through the formation of amide bonds. The designed dual-mode microRNA biosensor demonstrated a broad linear range spanning from 10-15 M to 10-6 M, with low detection limits of 5.18 × 10-15 M and 7.36 × 10-15 M when using chronocoulometry (CC) and amperometric i-t curve (i-t) modes, respectively. Furthermore, a dual-mode electrochemical biosensor has been successfully developed and utilized for the detection of microRNA in human serum, demonstrating its potential for precise and sensitive microRNA detection and its practical application value in clinical medicine.

16.
Article in English | MEDLINE | ID: mdl-39112427

ABSTRACT

Microcapsules with a cyclic polyphthalaldehyde (cPPA) shell and oil core were fabricated by an emulsification process. The low ceiling temperature cPPA shell was made phototriggerable by incorporating a photoacid generator (PAG). Photoactivation of the PAG created a strong acid which catalyzed cPPA depolymerization, resulting in the release of the core payload, as quantified by 1H NMR. The high molecular weight cPPA (197 kDa) yielded uniform spherical microcapsules. The core diameter was 24.8 times greater than the cPPA shell thickness (2.4 to 21.6 µm). Nonionic bis(cyclohexylsulfonyl)diazomethane (BCSD) and N-hydroxynaphthalimide triflate (HNT) PAGs were used as the PAG in the microcapsule shells. BCSD required dual stimuli of UV radiation and post-exposure baking at 60 °C to activate cPPA depolymerization while room temperature irradiation of HNT resulted in instantaneous core release. A 300 s UV exposure (365 nm, 10.8 J/cm2) of the cPPA/HNT microcapsules resulted in 66.5 ± 9.4% core release. Faster core release was achieved by replacing cPPA with a phthalaldehyde/propanal copolymer. A 30 s UV exposure (365 nm, 1.08 J/cm2) resulted in 82 ± 13% core release for the 75 mol % phthalaldehyde/25 mol % propanal copolymer microcapsules. The photoresponsive shell provides a versatile polymer microcapsule technology for on-demand, controlled release of hydrophobic core payloads.

17.
Article in English | MEDLINE | ID: mdl-39112900

ABSTRACT

This study aims to use beeswax, a readily available and cost-effective organic material, as a novel phase change material (PCM) within blends of low-density polyethylene (LDPE) and styrene-b-(ethylene-co-butylene)-b-styrene (SEBS). LDPE and SEBS act as support materials to prevent beeswax leakage. The physicochemical properties of new blended phase change materials (B-PCM) were determined using an X-ray diffractometer and an infrared spectrometer, confirming the absence of a chemical reaction within the materials. A scanning electron microscope was used for microstructural analysis, indicating that the interconnection of the structure allowed better thermal conductivity. Thermal gravimetric analysis revealed enhanced thermal stability for the B-PCM when combined with SEBS, especially within its operating temperature range. Analysis of phase change temperature and latent heat with differential scanning calorimetry showed no major difference in the melting point of the various PCM blends created. During the melting/solidification process, the B-PCMs possess excellent performance as characterized by W70/P30 (112.45 J.g-1) > W70/P20/S10 (94.28 J.g-1) > W70/P10/S20 (96.21 J.g-1) of latent heat storage. Additionally, the blends tend to reduce supercooling compared to pure beeswax. During heating and cooling cycles, the B-PCM exhibited minimal leakage and degradation, especially in blends containing SEBS. In comparison to the rapid temperature drop observed during the cooling process of W70/P30, the temperature decline of W70/P30 was slower and longer, as demonstrated by infrared thermography. The addition of LDPE to the PCM reduced melting time, indicating an improvement in the thermal energy storage reaction time to the demand. According to the obtained findings, increasing the SEBS concentration in the composite increased the thermal stability of the resulting PCM blends significantly. Despite the challenges mentioned earlier, SEBS proved to be an effective encapsulating material for beeswax, whereas LDPE served well as a supporting material. Leak tests were performed to find the ideal mass ratio, and weight loss was analyzed after multiple cycles of cooling and heating at 70 °C. The morphology, thermal characteristics, and chemical composition of the beeswax/LDPE/SEBS composite were all examined. Beeswax proves to be a highly effective phase change material for storing thermal energy within LDPE/SEBS blends.

18.
Small ; : e2403320, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113348

ABSTRACT

The diagnosis of diabetes mellitus (DM) affecting 537 million adults worldwide relies on invasive and costly enzymatic methods that have limited stability. Electroactive polypyrrole (PPy)-based molecularly imprinted polymer nanoparticles (eMIPs) have been developed that rival the affinity of enzymes whilst being low-cost, highly robust, and facile to produce. By drop-casting eMIPs onto low-cost disposable screen-printed electrodes (SPEs), sensors have been manufactured that can electrochemically detect glucose in a wide dynamic range (1 µm-10 mm) with a limit of detection (LOD) of 26 nm. The eMIPs sensors exhibit no cross reactivity to similar compounds and negligible glucose binding to non-imprinted polymeric nanoparticles (eNIPs). Measurements of serum samples of diabetic patients demonstrate excellent correlation (>0.93) between these eMIPs sensor and the current gold standard Roche blood analyzer test. Finally, the eMIPs sensors are highly durable and reproducible (storage >12 months), showcasing excellent robustness and thermal and chemical stability. Proof-of-application is provided via measuring glucose using these eMIPs sensor in a two-electrode configuration in spiked artificial interstitial fluid (AISF), highlighting its potential for non-invasive wearable monitoring. Due to the versatility of the eMIPs that can be adapted to virtually any target, this platform technology holds high promise for sustainable healthcare applications via providing rapid detection, low-cost, and inherent robustness.

19.
Bioact Mater ; 41: 158-173, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39131630

ABSTRACT

Dysregulated inflammation after trauma or infection could result in the further disease and delayed tissue reconstruction. The conventional anti-inflammatory drug treatment suffers to the poor bioavailability and side effects. Herein, we developed an amphiphilic multifunctional poly (citrate-polyglycol-curcumin) (PCGC) nano oligomer with the robust anti-inflammatory activity for treating acute lung injury (ALI) and Methicillin-resistant staphylococcus aureus (MRSA) infected wound. PCGC demonstrated the sustained curcumin release, inherent photoluminescence, good cellular compatibility, hemocompatibility, robust antioxidant activity and enhanced cellular uptake. PCGC could efficiently scavenge nitrogen-based free radicals, oxygen-based free radicals, and intracellular oxygen species, enhance the endothelial cell migration and reduce the expression of pro-inflammatory factors through the NF-κB signal pathway. Combined the anti-inflammation and antioxidant properties, PCGC can shortened the inflammatory process. In animal model of ALI, PCGC was able to reduce the pulmonary edema, bronchial cell infiltration, and lung inflammation, while exhibiting rapid metabolic behavior in vivo. The MRSA-infection wound model showed that PCGC significantly reduced the expression of pro-inflammatory factors, promoted the angiogenesis and accelerated the wound healing. The transcriptome sequencing and molecular mechanism studies further demonstrated that PCGC could inhibit multiple inflammatory related pathways including TNFAIP3, IL-15RA, NF-κB. This work demonstrates that PCGC is efficient in resolving inflammation and promotes the prospect of application in inflammatory diseases as the drug-loaded therapeutic system.

20.
Appl Radiat Isot ; 212: 111470, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39133987

ABSTRACT

The goal of this study is to measure the uranium concentration levels in the blood of Iraqi workers employed in certain government companies. Assessing the initial level of uranium toxicity in their blood and the possibility of health problems occurring. 184 blood samples from Iraqi government companies and the control group were collected in this study. A solid-state nuclear track detector (CR-39) was used to measure the amount of uranium present. Two drops of blood (100 µl) were placed on CR-39. The CR-39 was irradiated with a thermal neutron using the fission-track technique (241Am-9Be) to determine the uranium concentration in blood samples. The statistical analysis is carried out using the Origin Lab 2024 version. The results show the average of uranium concentration at all locations has a higher level compared to the control group. The blood samples from workers at the phosphate company had the highest amount (1.021 ± 0.050 µg/l), compared to samples from other factories. This result confirms that there is a connection between the concentration of uranium and phosphate substances. The results suggest that there is a slight increase in uranium levels that is related to both age and years of employment.

SELECTION OF CITATIONS
SEARCH DETAIL