Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Med (Berl) ; 101(5): 569-580, 2023 05.
Article in English | MEDLINE | ID: mdl-36988653

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease mediated by an interdependent network of proinflammatory molecules such as chemokines. Prokineticin 2 (PK2) is a chemokine-like peptide that modulates nociceptive threshold and immuno-inflammatory processes via two G-protein-linked receptors, prokineticin receptor 1 and 2 (PKR1 and PKR2). In the present study, we investigated the effects of the prokineticin receptor antagonist PC1 on arthritic pain and the inflammatory response in type II collagen-induced arthritis (CIA) in mice. We demonstrated that PC1, administered subcutaneously from day 25 to day 35 after CIA, improved clinical signs of arthritis such as paw edema, pain, and impaired locomotor activity. In CIA mice, PC1 was also able to lower plasma malondialdehyde (MDA) levels, suggesting a role in reducing oxidative damage, as well as joint expression levels of PK2, PKRs, TNFα, IL-1ß, CD4, CD8, and NF-kB. These results suggest that blocking PKRs may be a successful strategy to control arthritic pain and pathology development. KEY MESSAGES: PK2/PKRs expression levels strongly increase in the synovium of RA mice. PC1 treatment shows anti-arthritic activity and reduces arthritis-induced pain. PC1 treatment significantly lowers synovial PK2/PKRs levels. PC1 treatment lowers plasma MDA levels and synovial levels of TNFα and IL -1ß PC1 treatment is a viable therapeutic option for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synovitis , Mice , Animals , Arthritis, Experimental/pathology , Tumor Necrosis Factor-alpha/metabolism , Pain , Synovial Membrane , Synovitis/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism
2.
Front Pharmacol ; 12: 640441, 2021.
Article in English | MEDLINE | ID: mdl-33732160

ABSTRACT

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL