ABSTRACT
Nutritional stress is the major factor contributing to decline in the honey bee (Apis mellifera L.) populations given the high degree of dependence on floral resources, and due to the habitat loss. In this sense, monocultures of maize and avocado have great extensions in Mexico, but their impact on the physiology and morphology of A. mellifera is unknown. This research evaluated the effect of total protein content in monofloral (maize or avocado pollen diets) and polyfloral (using five types of pollen: Persea americana Mill., Zea mays L., Melampodium perfoliatum Cav., Drymaria villosa Cham Schltdl., and Lopezia racemosa Cav.) on their survival, body condition (controlled density, head mass, and development of hypopharyngeal glands; protein content in hemolymph), and immune response [lytic activity and activity of prophenoloxidase in the hemolymph (proPO)]. Corbicular pollen of P. americana had the highest protein content, followed by the corbicular pollen of Z. mays, M. perfoliatum, D. villosa, and L. racemosa. Polyfloral diet seems to be better for A. mellifera than the monofloral maize and avocado. Bees fed polyfloral pollen diet showed a high content of protein in the hemolymph in comparison with that fed maize or avocado pollen diets. Bees fed polyfloral and avocado pollen diet had the highest lytic activity but showed a decrease in proPO activity. In conclusion, polyfloral diets seem to be better for A. mellifera than the monofloral maize and avocado.
Subject(s)
Persea , Zea mays , Animals , Bees , Diet/veterinary , Immune System , Pollen/chemistryABSTRACT
Cyclophosphamide (CPA) is an alkylating agent used for cancer chemotherapy, organ transplantation, and autoimmune disease treatment. Here, mRNA sequencing and high-resolution respirometry were performed to evaluate the alterations of Drosophila melanogaster gene expression fed with CPA under acute (0.1 mg/mL, for 24 h) and chronic (0.05 mg/mL, for 35 days) treatments. Differential expression analysis was performed using Cufflinks-Cuffdiff, DESeq2, and edgeR software. CPA affected genes are involved in several biological functions, including stress response and immune-related pathways, oxi-reduction and apoptotic processes, and cuticle and vitelline membrane formation. In particular, this is the first report of CPA-induced mitochondrial dysfunction caused by the downregulation of genes involved with mitochondria constituents. CPA treatment also changed the transcription pattern of transposable elements (TEs) from the gypsy and copia superfamilies. The results presented here provided evidence of CPA mitochondrial toxicity mechanisms and that CPA can modify TEs transcription in Drosophila flies.
Subject(s)
Cyclophosphamide/toxicity , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Expression , Mitochondria , Animals , Apoptosis , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Peptide Hydrolases/genetics , Retroelements/geneticsABSTRACT
BACKGROUND: Little is known about how human disease vectors will modify their life history patterns and survival capacity as a result of climate change. One case is that of Chagas disease, which has triatomine bugs and Trypanosoma cruzi as vectors and parasite, respectively. This work aimed to determine: (i) the activity of the prophenoloxidase system (prophenoloxidase and phenoloxidase activity, two indicators of immune ability) in three intestine regions (anterior midgut, posterior midgutand rectum) of the triatomine bug Meccus pallidipennis under three temperature conditions (20 °C, 30 °C and 34 °C) against two T. cruzi strains [ITRI/MX/14/CHIL (Chilpancingo) and ITRI/MX/12/MOR (Morelos)], and (ii) whether vector survival varies under these three temperatures after infection by these T. cruzi strains. RESULTS: Our results indicate that prophenoloxidase activity was lower at higher temperatures, that the level of prophenoloxidase activity elicited by each strain was different (higher in Chilpancingo than in Morelos strains), and that prophenoloxidase activity was more intense in the anterior midgut than in the posterior midgut or rectum. Survival rates were lower in insects maintained at higher temperatures and infected by Chilpancingo strains. CONCLUSIONS: These results indicate that climate change could lead to lower prophenoloxidase activity and survival rates in triatomines when infected with different T. cruzi strains, which could reduce the vector capacity of M. pallidipennis.
Subject(s)
Catechol Oxidase/metabolism , Climate Change , Enzyme Precursors/metabolism , Temperature , Triatoma/parasitology , Trypanosoma cruzi/physiology , Animals , Female , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/parasitology , Insect Vectors/enzymology , Insect Vectors/parasitology , Male , Triatoma/enzymologyABSTRACT
BACKGROUND: Chagas disease is a key health problem in Latin America and is caused and transmitted by Trypanosoma cruzi and triatomine bugs, respectively. Control of triatomines has largely relied on the use pyrethroids, which has proved to be ineffective in the long term. Alternatively, the use of entomopathogenic fungi has been implemented to control triatomine bugs. These fungi are highly efficient as they induce a reduction in immune response on insects. Meccus pallidipennis is the main triatomine vector of Chagas disease in Mexico. In this work we investigated the effects of two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea, on M. pallidipennis nymphs in terms of insect survival and immune response. METHODS: We had an infected and a control group for each fungal species and assessed: a) insect survival during 30 days; and, b) phenoloxidase (PO) and prophenoloxidase (proPO; two key traits in insect immune response) at 24, 48, 96 and 144 h. For survival we used Kaplan-Meier survival analysis while for immune response we used factorial, repeated-measures ANOVA for each fungal species. RESULTS: Animals treated with M. anisopliae died sooner than animals treated with I. fumosorosea. Infected animals showed lower PO and proPO values than sham individuals, with a clear decrease in these parameters at 24 h with no further changes after this time. CONCLUSIONS: Our study widens the possibility of entomopathogenic fungi being used for triatomine control. The negative effect on PO and proPO seems mediated by a down-regulation of the triatomine immune response.
Subject(s)
Hypocreales/pathogenicity , Insect Vectors , Metarhizium/pathogenicity , Triatominae/immunology , Triatominae/microbiology , Animals , Communicable Disease Control/methods , Mexico , Nymph/immunology , Nymph/microbiology , Pest Control, Biological/methods , Survival AnalysisABSTRACT
The melanization reaction promoted by the prophenoloxidase-activating system is an essential defense response in invertebrates subjected to regulatory mechanisms that are still not fully understood. We report here the finding and characterization of a novel trypsin inhibitor, named panulirin, isolated from the hemocytes of the spiny lobster Panulirus argus with regulatory functions on the melanization cascade. Panulirin is a cationic peptide (pI 9.5) composed of 48 amino acid residues (5.3 kDa), with six cysteine residues forming disulfide bridges. Its primary sequence was determined by combining Edman degradation/N-terminal sequencing and electrospray ionization-MS/MS spectrometry. The low amino acid sequence similarity with known proteins indicates that it represents a new family of peptidase inhibitors. Panulirin is a competitive and reversible tight-binding inhibitor of trypsin (Ki = 8.6 nm) with a notable specificity because it does not inhibit serine peptidases such as subtilisin, elastase, chymotrypsin, thrombin, and plasmin. The removal of panulirin from the lobster hemocyte lysate leads to an increase in phenoloxidase response to LPS. Likewise, the addition of increasing concentrations of panulirin to a lobster hemocyte lysate, previously depleted of trypsin-inhibitory activity, decreased the phenoloxidase response to LPS in a concentration-dependent fashion. These results indicate that panulirin is implicated in the regulation of the melanization cascade in P. argus by inhibiting peptidase(s) in the pathway toward the activation of the prophenoloxidase enzyme.