Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
J Appl Microbiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991984

ABSTRACT

AIMS: We aimed to identify mechanisms underlying the tolerance of P. mirabilis-a common cause of catheter associated urinary tract infection-to the clinically used biocides chlorhexidine (CHD) and octenidine (OCT). METHODS AND RESULTS: We adapted three clinical isolates to grow at concentrations of 512 µg ml-1 CHD and 128 µg ml-1 OCT. Genetic characterisation and complementation studies revealed mutations inactivating the smvR repressor and increasing smvA efflux expression were associated with adaptation to both biocides. Mutations in mipA (encoding the MltA interacting protein) were less prevalent than smvR mutations and only identified in CHD adapted populations. Mutations in the rppA response regulator were exclusive to one adapted isolate and were linked with reduced polymyxin B susceptibility and a predicted gain of function after biocide adaptation. Biocide adaptation had no impact on crystalline biofilm formation. CONCLUSIONS: SmvR inactivation is a key mechanism in both CHD and OCT tolerance. MipA inactivation alone confers moderate protection against CHD, and rppA showed no direct role in either CHD or OCT susceptibility.

2.
Pak J Biol Sci ; 27(5): 268-275, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38840467

ABSTRACT

<b>Background and Objective:</b> Urinary tract infections from the use of an indwelling urinary catheter are one of the most common infections caused by <i>Proteus mirabilis</i>. Due to their biofilm-producing capacity and the increasing antimicrobial resistance in this microorganism, this study aimed to determine the prevalence, biofilm-producing capacity, antimicrobial resistance patterns, multidrug resistance and plasmid mediated resistance of the recovered isolates. <b>Materials and Methods:</b> A total of 50 urinary samples were collected from May to August, 2018 from patients on indwelling urinary catheters. Using routine microbiological and biochemical methods, 37 <i>P. mirabilis</i> were isolated. Biofilm forming capability was determined among the isolates using the tube method while antimicrobial susceptibility and plasmid curing were also performed. <b>Results:</b> All isolates were biofilm producers with 17(46%) being moderate producers while 20(54%) were strong biofilm formers. The study isolates exhibited a high resistance rate to empiric antibiotics, including ceftazidime (75.8%), cefuroxime (54.5%), ampicillin (69.7%) and amoxicillin-clavulanic acid (51.5%). Low resistance was seen in the fluoroquinolones, gentamicin and nitrofurantoin. Plasmid curing experiment revealed that most isolates lost their resistance indicating that resistance was borne on plasmids. Plasmid carriage is likely the reason for the high MDR rate of 56.8% observed. <b>Conclusion:</b> These findings necessitate the provision of infection control programs which will guide and implement policies.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catheters, Indwelling , Microbial Sensitivity Tests , Proteus mirabilis , Biofilms/drug effects , Biofilms/growth & development , Proteus mirabilis/drug effects , Proteus mirabilis/genetics , Proteus mirabilis/isolation & purification , Catheters, Indwelling/microbiology , Catheters, Indwelling/adverse effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/diagnosis , Plasmids/genetics , Urinary Catheters/microbiology , Urinary Catheters/adverse effects , Drug Resistance, Bacterial , Proteus Infections/microbiology , Proteus Infections/drug therapy , Catheter-Related Infections/microbiology , Catheter-Related Infections/diagnosis , Catheter-Related Infections/drug therapy , Female , Male , Drug Resistance, Multiple, Bacterial/genetics
3.
BMC Microbiol ; 24(1): 216, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890647

ABSTRACT

OBJECTIVE: This study aims to conduct an in-depth genomic analysis of a carbapenem-resistant Proteus mirabilis strain to uncover the distribution and mechanisms of its resistance genes. METHODS: The research primarily utilized whole-genome sequencing to analyze the genome of the Proteus mirabilis strain. Additionally, antibiotic susceptibility tests were conducted to evaluate the strain's sensitivity to various antibiotics, and related case information was collected to analyze the clinical distribution characteristics of the resistant strain. RESULTS: Study on bacterial strain WF3430 from a tetanus and pneumonia patient reveals resistance to multiple antibiotics due to extensive use. Whole-genome sequencing exposes a 4,045,480 bp chromosome carrying 29 antibiotic resistance genes. Two multidrug-resistant (MDR) gene regions, resembling Tn6577 and Tn6589, were identified (MDR Region 1: 64.83 Kb, MDR Region 2: 85.64 Kbp). These regions, consist of integrative and conjugative elements (ICE) structures, highlight the intricate multidrug resistance in clinical settings. CONCLUSION: This study found that a CR-PMI strain exhibits a unique mechanism for acquiring antimicrobial resistance genes, such as blaNDM-1, located on the chromosome instead of plasmids. According to the results, there is increasing complexity in the mechanisms of horizontal transmission of resistance, necessitating a comprehensive understanding and implementation of targeted control measures in both hospital and community settings.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , Whole Genome Sequencing , beta-Lactamases , Proteus mirabilis/genetics , Proteus mirabilis/drug effects , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , beta-Lactamases/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Proteus Infections/microbiology , Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , Genome, Bacterial/genetics , Carbapenems/pharmacology
4.
Braz J Microbiol ; 55(2): 1231-1241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727921

ABSTRACT

Laccase is an exothermic enzyme with copper in its structure and has an important role in biodegradation by providing oxidation of phenolic compounds and aromatic amines and decomposing lignin. The aim of this study is to reach maximum laccase enzyme activity with minimum cost and energy through optimization studies of Proteusmirabilis isolated from treatment sludge of a textile factory. In order to increase the laccase enzyme activities of the isolates, medium and culture conditions were optimized with the study of carbon (Glucose, Fructose, Sodium Acetate, Carboxymethylcellulose, Xylose) and nitrogen sources (Potassium nitrate, Yeast Extract, Peptone From Soybean, Bacteriological Peptone), incubation time, pH, temperature and Copper(II) sulfate concentration then according to the results obtained. Response Surface Method (RSM) was performed on six different variables with three level. According to the data obtained from the RSM, the maximum laccase enzyme activity is reached at pH 7.77, temperature 30.03oC, 0.5 g/L CuSO4, 0.5 g/L fructose and 0.082 g/L yeast extract conditions. After all, the laccase activity increased 2.7 times. As a result, laccase activity of P. mirabilis can be increased by optimization studies. The information obtained as a result of the literature studies is that the laccase enzymes produced in laboratory and industrial scale are costly and their amounts are low. This study is important in terms of obtaining more laccase activity from P.mirabilis with less cost and energy.


Subject(s)
Culture Media , Laccase , Proteus mirabilis , Sewage , Temperature , Textile Industry , Laccase/metabolism , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , Proteus mirabilis/metabolism , Proteus mirabilis/genetics , Sewage/microbiology , Hydrogen-Ion Concentration , Culture Media/chemistry , Industrial Waste , Nitrogen/metabolism , Carbon/metabolism , Biodegradation, Environmental
5.
Ann Clin Microbiol Antimicrob ; 23(1): 48, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802894

ABSTRACT

BACKGROUND: Proteus mirabilis is a significant nosocomial pathogen that is frequently associated with a wide range of infections, necessitating heightened attention to mitigate potential health risks. Hence, this study was performed to investigate the impact of sub-minimum inhibitory concentrations (MICs) of ciprofloxacin (CIP) on Proteus mirabilis clinical isolates. METHODS: The sub-MICs of CIP were selected using the growth curve approach. The untreated and treated isolates with sub-MICs of CIP were assessed for their biofilm development, motilities on agar, and other virulence factors. The cell morphology of untreated and treated isolates with sub-MIC of CIP was explored using electron microscope. Moreover, the expression levels of the virulence genes in isolates were measured using quantitative real-time PCR. RESULTS: Data revealed that sub-MICs of CIP significantly (p < 0.05), in a concentration-dependent manner, inhibited biofilm formation and other virulence factors in the selected isolates. Electron microscope analysis showed cell enlargement and various abnormalities in the cell wall and membrane integrity. CONCLUSION: Sub-MICs of CIP exhibited inhibition of virulence and alterations in morphological integrity against P. mirabilis isolates.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , Virulence Factors , Proteus mirabilis/drug effects , Proteus mirabilis/genetics , Ciprofloxacin/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Humans , Anti-Bacterial Agents/pharmacology , Proteus Infections/microbiology , Virulence Factors/genetics , Virulence/drug effects
6.
Emerg Microbes Infect ; 13(1): 2353310, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712879

ABSTRACT

OXA-48-like enzymes represent the most frequently detected carbapenemases in Enterobacterales in Western Europe, North Africa and the Middle East. In contrast to other species, the presence of OXA-48-like in Proteus mirabilis leads to an unusually susceptible phenotype with low MICs for carbapenems and piperacillin-tazobactam, which is easily missed in the diagnostic laboratory. So far, there is little data available on the genetic environments of the corresponding genes, blaOXA-48-like, in P. mirabilis. In this study susceptibility phenotypes and genomic data of 13 OXA-48-like-producing P. mirabilis were investigated (OXA-48, n = 9; OXA-181, n = 3; OXA-162, n = 1). Ten isolates were susceptible to meropenem and ertapenem and three isolates were susceptible to piperacillin-tazobactam. The gene blaOXA-48 was chromosomally located in 7/9 isolates. Thereof, in three isolates blaOXA-48 was inserted into a P. mirabilis genomic island. Of the three isolates harbouring blaOXA-181 one was located on an IncX3 plasmid and two were located on a novel MOBF plasmid, pOXA-P12, within the new transposon Tn7713. In 5/6 isolates with plasmidic location of blaOXA-48-like, the plasmids could conjugate to E. coli recipients in vitro. Vice versa, blaOXA-48-carrying plasmids could conjugate from other Enterobacterales into a P. mirabilis recipient. These data show a high diversity of blaOXA-48-like genetic environments compared to other Enterobacterales, where genetic environments are quite homogenous. Given the difficult-to-detect phenotype of OXA-48-like-producing P. mirabilis and the location of blaOXA-48-like on mobile genetic elements, it is likely that OXA-48-like-producing P. mirabilis can disseminate, escape most surveillance systems, and contribute to a hidden spread of OXA-48-like.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , beta-Lactamases , Proteus mirabilis/genetics , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , Proteus mirabilis/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Proteus Infections/microbiology , Plasmids/genetics , Genomic Islands , Carbapenems/pharmacology
7.
Cureus ; 16(4): e57710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711719

ABSTRACT

Contiguous bacterial osteomyelitis results from the spread of a variety of pyogenic bacteria from nearby skin, soft tissue, or joint infections into the underlying bone. This report describes a case of severe contiguous bacterial osteomyelitis in an 82-year-old female nursing home resident with newly diagnosed and comorbid peripheral arterial disease, along with a history of decubitus ulcers as a result of presumed neglect at her residence. The patient initially presented with multiple ulcerative lesions overlying the left foot and ankle with associated severe pain and chronic vascular insufficiency. The patient was empirically started on broad-spectrum antibiotics, with a subsequent wound culture demonstrating heavy growth of Proteus mirabilis. Multiple imaging modalities irrefutably demonstrated destructive bony changes characteristic of osteomyelitis. Left below-the-knee amputation was thereafter agreed upon as the most beneficial treatment method, with concomitant prolonged antibiotic therapy. This case emphasizes the importance of providing adequate medical and preventative care for elderly nursing home residents in an effort to reduce the incidence of contiguous bacterial osteomyelitis, a topic rarely discussed in current literature.

8.
Ann Clin Microbiol Antimicrob ; 23(1): 46, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790053

ABSTRACT

BACKGROUND: Proteus mirabilis is an opportunistic pathogen that has been held responsible for numerous nosocomial and community-acquired infections which are difficult to be controlled because of its diverse antimicrobial resistance mechanisms. METHODS: Antimicrobial susceptibility patterns of P. mirabilis isolates collected from different clinical sources in Mansoura University Hospitals, Egypt was determined. Moreover, the underlying resistance mechanisms and genetic relatedness between isolates were investigated. RESULTS: Antimicrobial susceptibility testing indicated elevated levels of resistance to different classes of antimicrobials among the tested P. mirabilis clinical isolates (n = 66). ERIC-PCR showed great diversity among the tested isolates. Six isolates (9.1%) were XDR while all the remaining isolates were MDR. ESBLs and AmpCs were detected in 57.6% and 21.2% of the isolates, respectively, where blaTEM, blaSHV, blaCTX-M, blaCIT-M and blaAmpC were detected. Carbapenemases and MBLs were detected in 10.6 and 9.1% of the isolates, respectively, where blaOXA-48 and blaNDM-1 genes were detected. Quinolone resistant isolates (75.8%) harbored acc(6')-Ib-cr, qnrD, qnrA, and qnrS genes. Resistance to aminoglycosides, trimethoprim-sulfamethoxazole and chloramphenicol exceeded 80%. Fosfomycin was the most active drug against the tested isolates as only 22.7% were resistant. Class I or II integrons were detected in 86.4% of the isolates. Among class I integron positive isolates, four different gene cassette arrays (dfrA17- aadA5, aadB-aadA2, aadA2-lnuF, and dfrA14-arr-3-blaOXA-10-aadA15) and two gene cassettes (dfrA7 and aadA1) were detected. While class II integron positive isolates carried four different gene cassette arrays (dfrA1-sat1-aadA1, estXVr-sat2-aadA1, lnuF- dfrA1-aadA1, and dfrA1-sat2). CONCLUSION: P. Mirabilis ability to acquire resistance determinants via integrons may be held responsible for the elevated rates of antimicrobial resistance and emergence of XDR or even PDR strains limiting the available therapeutic options for management of infections caused by those strains.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , Egypt/epidemiology , Humans , Proteus mirabilis/genetics , Proteus mirabilis/drug effects , Proteus mirabilis/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Proteus Infections/microbiology , Proteus Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , beta-Lactamases/genetics , Integrons/genetics , Bacterial Proteins/genetics , Cross Infection/microbiology , Cross Infection/epidemiology , Male
9.
Ecotoxicol Environ Saf ; 278: 116432, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728947

ABSTRACT

Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.


Subject(s)
Cadmium , Proteus mirabilis , Soil Pollutants , Cadmium/toxicity , Soil Pollutants/toxicity , Biodegradation, Environmental
10.
Acta Vet Hung ; 72(1): 11-20, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38578700

ABSTRACT

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.


Subject(s)
Anti-Bacterial Agents , Proteus mirabilis , Humans , Animals , Anti-Bacterial Agents/pharmacology , Virulence , Proteus mirabilis/genetics , Chickens , beta-Lactamases/genetics , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary
11.
Front Microbiol ; 15: 1383618, 2024.
Article in English | MEDLINE | ID: mdl-38646633

ABSTRACT

Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum ß-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.

12.
J Microbiol Methods ; 220: 106927, 2024 May.
Article in English | MEDLINE | ID: mdl-38561125

ABSTRACT

Bacterial biofilms form when bacteria attach to surfaces and generate an extracellular matrix that embeds and stabilizes a growing community. Detailed visualization and quantitative analysis of biofilm architecture by optical microscopy are limited by the law of diffraction. Expansion Microscopy (ExM) is a novel Super-Resolution technique where specimens are physically enlarged by a factor of ∼4, prior to observation by conventional fluorescence microscopy. ExM requires homogenization of rigid constituents of biological components by enzymatic digestion. We developed an ExM approach capable of expanding 48-h old Proteus mirabilis biofilms 4.3-fold (termed PmbExM), close to the theoretic maximum expansion factor without gross shape distortions. Our protocol, based on lytic and glycoside-hydrolase enzymatic treatments, degrades rigid components in bacteria and extracellular matrix. Our results prove PmbExM to be a versatile and easy-to-use Super-Resolution approach for enabling studies of P. mirabilis biofilm architecture, assembly, and even intracellular features, such as DNA organization.


Subject(s)
Biofilms , Proteus mirabilis , Proteus mirabilis/chemistry , Bacteria , DNA , Microscopy, Fluorescence
13.
Vet Res ; 55(1): 50, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594755

ABSTRACT

Proteus mirabilis is a commensal bacterium dwelling in the gastrointestinal (GI) tract of humans and animals. Although New Delhi metallo-ß-lactamase 1 (NDM-1) producing P. mirabilis is emerging as a threat, its epidemiology in our society remains largely unknown. LHPm1, the first P. mirabilis isolate harboring NDM-1, was detected from a companion dog that resides with a human owner. The whole-genome study revealed 20 different antimicrobial resistance (AMR) genes against various classes of antimicrobial agents, which corresponded to the MIC results. Genomic regions, including MDR genes, were identified with multiple variations and visualized in a comparative manner. In the whole-genome epidemiological analysis, multiple phylogroups were identified, revealing the genetic relationship of LHPm1 with other P. mirabilis strains carrying various AMR genes. These genetic findings offer comprehensive insights into NDM-1-producing P. mirabilis, underscoring the need for urgent control measures and surveillance programs using a "one health approach".


Subject(s)
Dog Diseases , Proteus Infections , Dogs , Humans , Animals , Anti-Bacterial Agents/pharmacology , Proteus mirabilis/genetics , Pets/genetics , Proteus Infections/veterinary , Proteus Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Republic of Korea , Microbial Sensitivity Tests/veterinary , Plasmids , Dog Diseases/genetics
14.
Mol Ther Oncol ; 32(1): 200770, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596299

ABSTRACT

Cancer immunotherapy based on bioengineering of bacteria can effectively increase anticancer immune responses. However, few studies have investigated the antitumor potential of engineering Proteus mirabilis. Here, we genetically engineered P. mirabilis to overexpress Vibrio vulnificus flagellin B (FlaB) protein in a murine CT26 tumor model. We found that a large number of FlaB-expressing P. mirabilis colonized tumor tissues, enhanced T cell infiltration and secretion of cytokines and cytotoxic proteins in tumors, and significantly restrained tumor growth. Our results also showed that programmed death ligand 1 (PD-L1) expression in tumor-infiltrating immune cells was elevated after treatment with FlaB-expressing P. mirabilis. In addition, combination therapy with FlaB-expressing P. mirabilis and PD-L1 blockade synergistically improved antitumor efficacy by enhancing infiltration of CD8+ cells. Furthermore, serum liver biochemical indices of mice increased in the short term in both the P. mirabilis and the FlaB-expressing P. mirabilis treatment groups but gradually recovered in the later stage of treatment so that FlaB protein expression did not increase the toxicity of P. mirabilis in vivo. Taken together, our results suggest that P. mirabilis could serve as an engineered bacterium for bacterium-based cancer immunotherapy.

15.
Front Cell Infect Microbiol ; 14: 1347173, 2024.
Article in English | MEDLINE | ID: mdl-38500503

ABSTRACT

Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.


Subject(s)
Bacteriophage P2 , Bacteriophages , Animals , Dogs , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Proteus mirabilis , Biofilms , Bacteriophages/genetics
16.
Pathogens ; 13(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535596

ABSTRACT

Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960-cCL 86%, LO 95%; Enterococcus avium 1669-cCL 85%, LO 94%; Enterococcus cloacae 6392-cCL 83%, LO-98%; and Pseudomonas aeruginosa 3057-cCL 70%, LO-82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation.

17.
Mol Biol Rep ; 51(1): 446, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532199

ABSTRACT

BACKGROUND: Bacterial pathogens are the causative agents of some of the most serious disease problems in cultured fish causing mortalities and severe economic losses. This study was conducted to determine the occurrence and characterization of Proteus mirabilis from infected farmed African catfish in Ogun State, Nigeria. METHODOLOGY: The bacteria were isolated from diseased farmed African catfish (Clarias gariepinus, n=128) with clinical signs of skin haemorrhages, ulceration, and ascites purposively sampled from farms within three senatorial districts namely Ogun East (OE; n=76), Ogun Central (OC; n=30) and Ogun West (OW; n=22) in Ogun State. The isolates were identified based on morphological characteristics, biochemical tests, and 16S rRNA gene characterisation. The 16S rRNA gene sequences were analysed using BLAST, submitted to the NCBI database, and an accession number was generated. RESULTS: The occurrence of Proteus mirabilis in infected Clarias gariepinus was 13.16%, 25%, and 31.25% in OE, OC, and OW, respectively. A significantly higher incidence was recorded in OW compared to other areas. All the Proteus mirabilis isolates were motile, gram-negative, short rod, non-lactose fermenter bacteria that showed positive catalase reactions, negative oxidase, and positive for methyl-red. The Proteus mirabilis isolates (OP 594726.1) were closely related to isolates from Pakistan, Italy, and India CONCLUSIONS: We conclude that Proteus mirabilis colonises farmed Clarias gariepinus in Ogun State, Nigeria and the identified strain showed an evolutionary relationship with known pathogenic NCBI reference strains from other countries.


Subject(s)
Catfishes , Proteus mirabilis , Animals , Proteus mirabilis/genetics , Catfishes/genetics , Nigeria , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
18.
Cureus ; 16(2): e53666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455784

ABSTRACT

Xanthogranulomatous pyelonephritis (XGPN) is an uncommon chronic obstructive renal suppuration disease. Histopathologically, XGPN manifests as lipid-laden macrophage infiltration in renal microstructure and inflammation of an engorged non-functional kidney. Nephrectomy is the standard therapeutic treatment, and the overall prognosis is good. Here, we report a case of XGPN presented as flank pain in an otherwise healthy child.

19.
J Infect Chemother ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38442770

ABSTRACT

INTRODUCTION: Carbon dioxide-dependent Proteus mirabilis has been isolated from clinical specimens. It is not clear whether mutations in carbonic anhydrase are responsible for the carbon dioxide dependence of P. mirabilis. The pathogenicity of carbon dioxide-dependent P. mirabilis also remains unclear. The purpose of this study was to determine the cause carbon dioxide dependence of P. mirabilis and its pathogenicity. METHODS: The DNA sequence of can encoding carbonic anhydrase of a carbon dioxide-dependent P. mirabilis small colony variant (SCV) isolate was analyzed. To confirm that impaired carbonic anhydrase activity is responsible for the formation of the carbon dioxide-dependent SCV phenotype of P. mirabilis, we performed complementation experiments using plasmids with intact can. Additionally, mouse infection experiments were performed to confirm the change in virulence due to the mutation of carbonic anhydrase. RESULTS: We found that the can gene of the carbon dioxide-dependent P. mirabilis SCV isolate showed had a frameshift mutation with a deletion of 1 bp (c. 173delC). The can of P. mirabilis encodes carbonic anhydrase was also found to function in Escherichia coli. The cause of the carbon dioxide-dependent SCV phenotype of P. mirabilis was an abnormality in carbonic anhydrase. Nevertheless, no changes were observed in virulence due to the mutation of carbonic anhydrase in mouse infection experiments. CONCLUSIONS: The can gene is essential for the growth of P. mirabilis in ambient air. The mechanisms underlying this fitness advantage in terms of infection warrant further investigation.

20.
Infect Drug Resist ; 17: 571-581, 2024.
Article in English | MEDLINE | ID: mdl-38375102

ABSTRACT

Background: Proteus mirabilis (P. mirabilis) is known to cause various infections, most commonly urinary tract infections, and is a threat to hospitalized patients, especially in long-stay departments that utilize invasive devices. This study aims to fill the knowledge gap regarding P. mirabilis epidemiology and antimicrobial resistance in Saudi Arabia. It investigates epidemiological patterns, resistance characteristics, and clinical outcomes among P. mirabilis patients at King Fahad Medical City in Riyadh from 2019 to 2021. Methods: A total of 598 P. mirabilis isolated from diverse clinical specimens, including the clinical information of 78 intensive care unit (ICU) patients, were included in the current study. The Phoenix BD instrument was used for complete identification and sensitivity testing of Proteus spp. Demographic, clinical, and outcome data were reported and compared using statistical analysis. Results: Pan-drug-resistant isolates were identified in 2019 (n = 6), although multi- and extensively drug-resistant isolate frequencies were greatest among all patients in 2019. The highest susceptibility levels were observed for piperacillin-tazobactam, carbapenems, and cephalosporins antibiotics. In contrast, Cephalothin, trimethoprim-sulfamethoxazole, and ampicillin had the lowest susceptibilities. Urine infections with a positive culture of P. mirabilis were significantly higher in females and non-ICU patients (p <0.001), but respiratory infections were significantly higher in ICU patients (p <0.001). Moreover, ICU patients infected with P. mirabilis and undergoing renal dialysis have a 7.2-fold (P 0.034) higher risk of death than those not receiving dialysis. Conclusion: Hospitalized patients are at risk of fatal consequences due to P. mirabilis infection. It is crucial to conduct further investigation to fully understand the severity of this issue and take necessary measures to prevent it.

SELECTION OF CITATIONS
SEARCH DETAIL