Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2308067121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442160

ABSTRACT

Circadian clocks impose daily periodicities to behavior, physiology, and metabolism. This control is mediated by a central clock and by peripheral clocks, which are synchronized to provide the organism with a unified time through mechanisms that are not fully understood. Here, we characterized in Drosophila the cellular and molecular mechanisms involved in coupling the central clock and the peripheral clock located in the prothoracic gland (PG), which together control the circadian rhythm of emergence of adult flies. The time signal from central clock neurons is transmitted via small neuropeptide F (sNPF) to neurons that produce the neuropeptide Prothoracicotropic Hormone (PTTH), which is then translated into daily oscillations of Ca2+ concentration and PTTH levels. PTTH signaling is required at the end of metamorphosis and transmits time information to the PG through changes in the expression of the PTTH receptor tyrosine kinase (RTK), TORSO, and of ERK phosphorylation, a key component of PTTH transduction. In addition to PTTH, we demonstrate that signaling mediated by other RTKs contributes to the rhythmicity of emergence. Interestingly, the ligand to one of these receptors (Pvf2) plays an autocrine role in the PG, which may explain why both central brain and PG clocks are required for the circadian gating of emergence. Our findings show that the coupling between the central and the PG clock is unexpectedly complex and involves several RTKs that act in concert and could serve as a paradigm to understand how circadian clocks are coordinated.


Subject(s)
Blood Group Antigens , Circadian Clocks , Animals , Circadian Clocks/genetics , Drosophila , Signal Transduction , Receptor Protein-Tyrosine Kinases/genetics , Phosphorylation , Vascular Endothelial Growth Factors
2.
Development ; 150(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37800333

ABSTRACT

Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Histone Demethylases/metabolism , Chromatin , Biology
3.
Gen Comp Endocrinol ; 332: 114184, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455643

ABSTRACT

Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.


Subject(s)
Bombyx , Insect Hormones , Rhodnius , Animals , Ecdysteroids/metabolism , Rhodnius/genetics , Rhodnius/metabolism , Circadian Rhythm/physiology , Insect Hormones/genetics , Insect Hormones/metabolism , Larva/metabolism
4.
Genetics ; 222(3)2022 11 01.
Article in English | MEDLINE | ID: mdl-36149288

ABSTRACT

Animals develop from juveniles to sexually mature adults through the action of steroid hormones. In insect metamorphosis, a surge of the steroid hormone ecdysone prompts the transition from the larval to the adult stage. Ecdysone is synthesized by a series of biosynthetic enzymes that are specifically expressed in an endocrine organ, the prothoracic gland. At the late larval stage, the expression levels of ecdysone biosynthetic enzymes are upregulated through the action of numerous transcription factors, thus initiating metamorphosis. In contrast, the mechanism by which chromatin regulators support the expression of ecdysone biosynthetic genes is largely unknown. Here, we demonstrate that Su(var)2-10 and Su(var)205, suppressor of variegation [Su(var)] genes encoding a chromatin regulator Su(var)2-10 and nonhistone heterochromatic protein 1a, respectively, regulate the transcription of one of the heterochromatic ecdysone biosynthetic genes, neverland, in Drosophila melanogaster. Knockdown of Su(var)2-10 and Su(var)205 in the prothoracic gland caused a decrease in neverland expression, resulting in a defect in larval-to-prepupal transition. Furthermore, overexpression of neverland and administration of 7-dehydrocholesterol, a biosynthetic precursor of ecdysone produced by Neverland, rescued developmental defects in Su(var)2-10 and Su(var)205 knockdown animals. These results indicate that Su(var)2-10- and Su(var)205-mediated proper expression of neverland is required for the initiation of metamorphosis. Given that Su(var)2-10-positive puncta are juxtaposed with the pericentromeric heterochromatic region, we propose that Su(var)2-10- and Su(var)205-dependent regulation of inherent heterochromatin structure at the neverland gene locus is essential for its transcriptional activation.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Ecdysone , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Transcriptional Activation , Up-Regulation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Larva/genetics , Larva/metabolism , Gene Expression Regulation, Developmental
5.
Curr Biol ; 32(8): 1788-1797.e5, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35316653

ABSTRACT

Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.


Subject(s)
Drosophila Proteins , Somatomedins , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Ecdysone/metabolism , Insulin/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Larva/metabolism , Nutrients , Somatomedins/metabolism
6.
Gene ; 813: 146095, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34902509

ABSTRACT

The corpus allatum (CA) is an endocrine organ of insects that synthesizes juvenile hormone (JH). Yet little is known regarding the global gene expression profile for the CA, although JH signaling pathway has been well-studied in insects. Here, we report the availability of the transcriptome resource of the isolated CA from the final (fifth) instar larvae of the silkworm, Bombyx mori when the JH titer is low. We also compare it with prothoracic gland (PG) that produces the precursor of 20-hydroxyecdysone (20E), to find some common features in the JH and 20E related genes between the two organs. A total of 17,262 genes were generated using a combination of genome-guided assembly and annotation, in which 10,878 unigenes were enriched in 58 Gene Ontology terms, representing almost all expressed genes in the CA of the 5th instar larvae of B. mori. Transcriptome analysis confirmed that gene for Torso, the receptor of prothoracicotropic hormone (PTTH), is present in the PG but not in the CA. Transcriptome comparison and quantitative real time-PCR indicated that 11 genes related to JH biosynthesis and regulation and six genes for 20E are expressed in both the CA and PG, suggesting that the two organs may cross talk with each other through these genes. The temporal expression profiles of the two genes for the multifunctional neurohormonal factor sericotropin precursor and the uncharacterized protein LOC114249572, the most abundant in the CA and PG transcriptomes respectively, suggested that they might play important roles in the JH and 20E biosynthesis. The present work provides new insights into the CA and PG.


Subject(s)
Bombyx/genetics , Corpora Allata/physiology , Animals , Bombyx/metabolism , Corpora Allata/metabolism , Gene Expression , Insect Hormones/genetics , Juvenile Hormones/biosynthesis , Juvenile Hormones/genetics , Larva , Metamorphosis, Biological , Signal Transduction , Transcriptome
7.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948262

ABSTRACT

Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.


Subject(s)
Grasshoppers/metabolism , Molting/physiology , Neuropeptides/metabolism , Animals , Ecdysteroids/genetics , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Grasshoppers/genetics , Grasshoppers/physiology , Insect Hormones/metabolism , Neuropeptides/physiology , Peptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
8.
Cell Rep ; 36(9): 109644, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469735

ABSTRACT

In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Endocrine Glands/enzymology , Metamorphosis, Biological , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Animals, Genetically Modified , Autocrine Communication , Body Size , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Ecdysone/metabolism , Endocrine Glands/embryology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Developmental , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Invertebrate Peptide/genetics , Receptors, Invertebrate Peptide/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factors/metabolism
9.
J Insect Physiol ; 134: 104294, 2021 10.
Article in English | MEDLINE | ID: mdl-34389412

ABSTRACT

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.


Subject(s)
Drosophila melanogaster , Ecdysone , Triterpenes/pharmacology , Animals , Bombyx/drug effects , Bombyx/metabolism , Drosophila Proteins/drug effects , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Ecdysone/antagonists & inhibitors , Ecdysone/biosynthesis , Gene Expression Regulation, Developmental , Juvenile Hormones/pharmacology , Larva/drug effects , Larva/growth & development , Larva/metabolism , Metamorphosis, Biological/drug effects , Molting/drug effects , Organ Culture Techniques , Plant Extracts/pharmacology , Pupa/drug effects , Pupa/growth & development , Pupa/metabolism
10.
Front Physiol ; 12: 650972, 2021.
Article in English | MEDLINE | ID: mdl-34040541

ABSTRACT

The mulberry silkworm (Bombyx mori) is a model organism, and BmNPV is a typical baculovirus. Together, these organisms form a useful model to investigate host-baculovirus interactions. Prothoracic glands (PGs) are also model organs, used to investigate the regulatory effect of synthetic ecdysone on insect growth and development. In this study, day-4 fifth instar silkworm larvae were infected with BmNPV. Wandering silkworms appeared in the infected groups 12 h earlier than in the control groups, and the ecdysone titer in infected larvae was significantly higher than that of the control larvae. We then used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h after BmNPV infection. We identified 15 differentially expressed genes (DEGs) that were classified as mainly being involved in metabolic processes and pathways. All 15 DEGs were expressed in the PGs, of which Novel01674, BmJing, and BmAryl were specifically expressed in the PGs. The transcripts of BmNGDN, BmTrypsin-1, BmACSS3, and BmJing were significantly increased, and BmPyd3, BmTitin, BmIGc2, Novel01674, and BmAryl were significantly decreased from 24 to 72 h in the PGs after BmNPV infection. The changes in the transcription of these nine genes were generally consistent with the transcriptome data. The upregulation of BmTrypsin-1 and BmACSS3 indicate that these DEGs may be involved in the maturation process in the latter half of the fifth instar of silkworm larvae. These findings further our understanding of silkworm larval development, the interaction between BmNPV infection and the host developmental response, and host-baculovirus interactions in general.

11.
Front Physiol ; 12: 619219, 2021.
Article in English | MEDLINE | ID: mdl-33708137

ABSTRACT

Metabolism, growth, and development are intrinsically linked, and their coordination is dependent upon inter-organ communication mediated by anabolic, catabolic, and steroid hormones. In Drosophila melanogaster, the corpora cardiaca (CC) influences metabolic homeostasis through adipokinetic hormone (AKH) signaling. AKH has glucagon-like properties and is evolutionarily conserved in mammals as the gonadotropin-releasing hormone, but its role in insect development is unknown. Here we report that AKH signaling alters larval development in a nutrient stress-dependent manner. This activity is regulated by the locus dg2, which encodes a cGMP-dependent protein kinase (PKG). CC-specific downregulation of dg2 expression delayed the developmental transition from larval to pupal life, and altered adult metabolism and behavior. These developmental effects were AKH-dependent, and were observed only in flies that experienced low nutrient stress during larval development. Calcium-mediated vesicle exocytosis regulates ecdysteroid secretion from the prothoracic gland (PG), and we found that AKH signaling increased cytosolic free calcium levels in the PG. We identified a novel pathway through which PKG acts in the CC to communicate metabolic information to the PG via AKH signaling. AKH signaling provides a means whereby larval nutrient stress can alter developmental trajectories into adulthood.

12.
Curr Biol ; 31(4): 884-891.e3, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33308417

ABSTRACT

Animals with exoskeletons molt for further growth. In insects, the number of larval (or nymphal) molts varies inter- and intra-specifically, and it is widely accepted that the variation in the number of larval molts is an adaptive response to diverse environmental conditions.1-5 However, the molecular mechanism that underlies the variety and plasticity in the number of larval molts is largely unknown. In the silkworm, Bombyx mori, there are strains that molt three, four, or five times, and these numbers are determined by allelic variation at a single autosomal locus, Moltinism (M).6-9 Here, we demonstrate that the Hox gene Sex combs reduced (Scr) is responsible for the phenotypes of the M locus. Scr is selectively expressed in the larval prothoracic gland (PG), an endocrine organ that produces molting hormones.2Scr represses the biosynthesis of molting hormones in the PG, thereby regulating the incremental increase in body size during each larval instar. Our experiments consistently suggest that the differential expression levels of Scr among the three M alleles result in different growth ratios that ultimately lead to the different number of larval molts. Although the role of Hox genes in conferring segmental identity along the body axis and in molding segment-specific structure later in development has been well established,10-13 the present study identifies an unexpected role of Hox gene in hormone biosynthesis. This new role means that, in addition to shaping segment-specific morphology, Hox genes also drive the evolution of life history traits by regulating animal physiology.


Subject(s)
Bombyx , Larva , Molting , Animals , Ecdysone , Larva/genetics , Molting/genetics , Phenotype
13.
Development ; 147(22)2020 11 27.
Article in English | MEDLINE | ID: mdl-33077428

ABSTRACT

Insect metamorphosis originated around the middle Devonian, associated with the innovation of the final molt; this occurs after histolysis of the prothoracic gland (PG; which produces the molting hormone) in the first days of adulthood. We previously hypothesized that transcription factor E93 is crucial in the emergence of metamorphosis, because it triggers metamorphosis in extant insects. This work on the cockroach Blattella germanica reveals that E93 also plays a crucial role in the histolysis of PG, which fits the above hypothesis. Previous studies have shown that the transcription factor FTZ-F1 is essential for PG histolysis. We have found that FTZ-F1 depletion towards the end of the final nymphal instar downregulates the expression of E93, whereas E93-depleted nymphs molt to adults that retain a functional PG. Interestingly, these adults are able to molt again, which is exceptional in insects. The study of insects able to molt again in the adult stage may reveal clues about how nymphal epidermal cells definitively become adult cells, and whether it is possible to reverse this process.


Subject(s)
Blattellidae/metabolism , Insect Proteins/deficiency , Metamorphosis, Biological , Molting , Transcription Factors/deficiency , Animals , Blattellidae/genetics , Insect Proteins/metabolism , Nymph/genetics , Nymph/metabolism , Transcription Factors/metabolism
14.
Genetics ; 216(2): 269-313, 2020 10.
Article in English | MEDLINE | ID: mdl-33023929

ABSTRACT

The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.


Subject(s)
Body Size , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Animals , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Life Cycle Stages , Signal Transduction
15.
Curr Biol ; 30(11): 2156-2165.e5, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32386525

ABSTRACT

Steroid hormones play key roles in development, growth, and reproduction in various animal phyla [1]. The insect steroid hormone, ecdysteroid, coordinates growth and maturation, represented by molting and metamorphosis [2]. In Drosophila melanogaster, the prothoracicotropic hormone (PTTH)-producing neurons stimulate peak levels of ecdysteroid biosynthesis for maturation [3]. Additionally, recent studies on PTTH signaling indicated that basal levels of ecdysteroid negatively affect systemic growth prior to maturation [4-8]. However, it remains unclear how PTTH signaling is regulated for basal ecdysteroid biosynthesis. Here, we report that Corazonin (Crz)-producing neurons regulate basal ecdysteroid biosynthesis by affecting PTTH neurons. Crz belongs to gonadotropin-releasing hormone (GnRH) superfamily, implying an analogous role in growth and maturation [9]. Inhibition of Crz neuronal activity increased pupal size, whereas it hardly affected pupariation timing. This phenotype resulted from enhanced growth rate and a delay in ecdysteroid elevation during the mid-third instar larval (L3) stage. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid- than the late-L3 stage. Silencing of CrzR in PTTH neurons increased pupal size, phenocopying the inhibition of Crz neuronal activity. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons during the mid-L3, but not the late-L3, stage. Furthermore, we found that octopamine neurons contact Crz neurons in the subesophageal zone (SEZ), transmitting signals for systemic growth. Together, our results suggest that the Crz-PTTH neuronal axis modulates ecdysteroid biosynthesis in response to octopamine, uncovering a regulatory neuroendocrine system in the developmental transition from growth to maturation.


Subject(s)
Drosophila melanogaster/growth & development , Ecdysteroids/biosynthesis , Insect Hormones/metabolism , Insect Proteins/metabolism , Neuropeptides/metabolism , Signal Transduction , Animals , Drosophila melanogaster/metabolism , Gene Expression Regulation, Developmental , Larva/growth & development , Larva/metabolism , Pupa/growth & development , Pupa/metabolism
16.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118705, 2020 07.
Article in English | MEDLINE | ID: mdl-32199885

ABSTRACT

The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.


Subject(s)
Iron Regulatory Protein 1/genetics , Iron-Regulatory Proteins/genetics , Iron-Sulfur Proteins/genetics , Iron/metabolism , Aconitate Hydratase/genetics , Cell Nucleus/genetics , Ceruloplasmin/genetics , Cytosol/metabolism , Ferritins/genetics , Gene Expression Regulation/genetics , Iron-Sulfur Proteins/chemistry , Oxidation-Reduction , RNA, Messenger/genetics
17.
Insect Biochem Mol Biol ; 119: 103335, 2020 04.
Article in English | MEDLINE | ID: mdl-32061770

ABSTRACT

Life history trade-offs lead to various strategies that maximize fitness, but the developmental mechanisms underlying these alternative strategies continue to be poorly understood. In insects, trade-offs exist between size and developmental time. Recent studies in the fruit fly Drosophila melanogaster have suggested that the steroidogenic prothoracic glands play a key role in determining the timing of metamorphosis. In this study, the nutrient-dependent growth and transcriptional activation of prothoracic glands were studied in D. melanogaster and the tobacco hornworm Manduca sexta. In both species, minimum viable weight (MVW) was associated with activation of ecdysteroid biosynthesis genes and growth of prothoracic gland cells. However, the timing of MVW attainment in M. sexta is delayed by the presence of the sesquiterpenoid hormone, juvenile hormone (JH), whereas in D. melanogaster it is not. Moreover, in D. melanogaster, the transcriptional regulation of ecdysteroidogenesis becomes nutrient-independent at the MVW/critical weight (CW) checkpoint. In contrast, in M. sexta, starvation consistently reduced transcriptional activation of ecdysteroid biosynthesis genes even after CW attainment, indicating that the nature of CW differs fundamentally between the two species. In D. melanogaster, the prothoracic glands dictate the timing of metamorphosis even in the absence of nutritional inputs, whereas in M. sexta, prothoracic gland activity is tightly coupled to the nutritional status of the body, thereby delaying the onset of metamorphosis before CW attainment. We propose that selection for survival under unpredictable nutritional availability leads to the evolution of increased modularity in both morphological and endocrine traits.


Subject(s)
Drosophila melanogaster/physiology , Ecdysteroids/metabolism , Juvenile Hormones/metabolism , Life History Traits , Manduca/physiology , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Drosophila melanogaster/drug effects , Drosophila melanogaster/growth & development , Endocrine Glands/physiology , Larva/drug effects , Larva/growth & development , Larva/physiology , Manduca/drug effects , Manduca/growth & development , Metamorphosis, Biological
18.
Development ; 146(24)2019 12 20.
Article in English | MEDLINE | ID: mdl-31862793

ABSTRACT

In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development.


Subject(s)
Biological Clocks/genetics , Drosophila Proteins/physiology , Drosophila melanogaster , Embryonic Development/genetics , Endocrine Glands/embryology , Histone Demethylases/physiology , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Ecdysone/metabolism , Embryo, Nonmammalian , Endocrine Glands/metabolism , Endoreduplication/genetics , Female , Gene Expression Regulation, Developmental , Larva , MAP Kinase Signaling System/physiology , Male , Organogenesis/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Time Factors
19.
Philos Trans R Soc Lond B Biol Sci ; 374(1783): 20180415, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31438822

ABSTRACT

The three modes of insect postembryonic development are ametaboly, hemimetaboly and holometaboly, the latter being considered the only significant metamorphosis mode. However, the emergence of hemimetaboly, with the genuine innovation of the final moult, represents the origin of insect metamorphosis and a necessary step in the evolution of holometaboly. Hemimetaboly derives from ametaboly and might have appeared as a consequence of wing emergence in Pterygota, in the early Devonian. In extant insects, the final moult is mainly achieved through the degeneration of the prothoracic gland (PG), after the formation of the winged and reproductively competent adult stage. Metamorphosis, including the formation of the mature wings and the degeneration of the PG, is regulated by the MEKRE93 pathway, through which juvenile hormone precludes the adult morphogenesis by repressing the expression of transcription factor E93, which triggers this change. The MEKRE93 pathway appears conserved in extant metamorphosing insects, which suggest that this pathway was operative in the Pterygota last common ancestor. We propose that the final moult, and the consequent hemimetabolan metamorphosis, is a monophyletic innovation and that the role of E93 as a promoter of wing formation and the degeneration of the PG was mechanistically crucial for their emergence. This article is part of the theme issue 'The evolution of complete metamorphosis'.


Subject(s)
Biological Evolution , Insecta/growth & development , Molting , Animals
20.
Dev Cell ; 48(5): 659-671.e4, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30799225

ABSTRACT

Steroid hormones are important signaling molecules that regulate growth and drive the development of many cancers. These factors act as long-range signals that systemically regulate the growth of the entire organism, whereas the Hippo/Warts tumor-suppressor pathway acts locally to limit organ growth. We show here that autophagy, a pathway that mediates the degradation of cellular components, also controls steroid production. This process is regulated by Warts (in mammals, LATS1/2) signaling, via its effector microRNA bantam, in response to nutrients. Specifically, autophagy-mediated mobilization and trafficking of the steroid precursor cholesterol from intracellular stores controls the production of the Drosophila steroid ecdysone. Furthermore, we also show that bantam regulates this process via the ecdysone receptor and Tor signaling, identifying pathways through which bantam regulates autophagy and growth. The Warts pathway thus promotes nutrient-dependent systemic growth during development by autophagy-dependent steroid hormone regulation (ASHR). These findings uncover an autophagic trafficking mechanism that regulates steroid production.


Subject(s)
Autophagy/physiology , Cell Movement/physiology , Cholesterol/metabolism , Ecdysone/metabolism , Gene Expression Regulation, Developmental , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , MicroRNAs/genetics , Nuclear Proteins/metabolism , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL