Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Thromb Haemost ; 22(5): 1463-1474, 2024 May.
Article in English | MEDLINE | ID: mdl-38266680

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs), in particular those derived from activated platelets, are associated with a risk of future venous thromboembolism. OBJECTIVES: To study the biomolecular profile and function characteristics of EVs from control (unstimulated) and activated platelets. METHODS: Biomolecular profiling of single or very few (1-4) platelet-EVs (control/stimulated) was performed by Raman tweezers microspectroscopy. The effects of such EVs on the coagulation system were comprehensively studied. RESULTS: Raman tweezers microspectroscopy of platelet-EVs followed by biomolecular component analysis revealed for the first time 3 subsets of EVs: (i) protein rich, (ii) protein/lipid rich, and (iii) lipid rich. EVs from control platelets presented a heterogeneous biomolecular profile, with protein-rich EVs being the main subset (58.7% ± 3.5%). Notably, the protein-rich subset may contain a minor contribution from other extracellular particles, including protein aggregates. In contrast, EVs from activated platelets were more homogeneous, dominated by the protein/lipid-rich subset (>85%), and enriched in phospholipids. Functionally, EVs from activated platelets increased thrombin generation by 52.4% and shortened plasma coagulation time by 34.6% ± 10.0% compared with 18.6% ± 13.9% mediated by EVs from control platelets (P = .015). The increased procoagulant activity was predominantly mediated by phosphatidylserine. Detailed investigation showed that EVs from activated platelets increased the activity of the prothrombinase complex (factor Va:FXa:FII) by more than 6-fold. CONCLUSION: Our study reports a novel quantitative biomolecular characterization of platelet-EVs possessing a homogenous and phospholipid-enriched profile in response to platelet activation. Such characteristics are accompanied with an increased phosphatidylserine-dependent procoagulant activity. Further investigation of a possible role of platelet-EVs in the pathogenesis of venous thromboembolism is warranted.


Subject(s)
Blood Coagulation , Blood Platelets , Extracellular Vesicles , Phospholipids , Platelet Activation , Spectrum Analysis, Raman , Humans , Blood Platelets/metabolism , Extracellular Vesicles/metabolism , Phospholipids/metabolism , Thrombin/metabolism , Thromboplastin/metabolism , Enzyme Activation
2.
Thromb Res ; 230: 84-93, 2023 10.
Article in English | MEDLINE | ID: mdl-37660436

ABSTRACT

INTRODUCTION: Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS: We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS: In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS: We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.


Subject(s)
Protein C , Protein S , Thrombin , Humans , Anticoagulants , Blood Coagulation , Factor V/metabolism , Factor Va/metabolism , Factor Xa/metabolism , Protein C/metabolism , Protein S/metabolism , Thrombin/metabolism , Thromboplastin/metabolism
3.
Methods Mol Biol ; 2663: 369-380, 2023.
Article in English | MEDLINE | ID: mdl-37204724

ABSTRACT

Bivalirudin (Angiomax, Angiox) is a parenteral direct thrombin inhibitor (DTI) that is used for patients with heparin-induced thrombocytopenia (HIT), where heparin cannot be used due to the risk of thrombosis. Bivalirudin is also licensed for use in cardiology procedures (e.g., percutaneous transluminal coronary angioplasty; PTCA). Bivalirudin is a synthetic analogue of hirudin found in the saliva of the medicinal leech and has a relatively short half-life of ~25 min. Several assays can be used to monitor bivalirudin; these include the activated partial thromboplastin time (APTT), activated clotting time (ACT), ecarin clotting time (ECT), an ecarin-based chromogenic assay, thrombin time (TT), the dilute TT, and the prothrombinase-induced clotting time (PiCT). Drug concentrations can also be measured using liquid chromatography tandem mass spectrometry (LC/MS) and clotting or chromogenic-based assays with specific drug calibrators and controls.


Subject(s)
Hirudins , Peptide Fragments , Humans , Hirudins/pharmacology , Peptide Fragments/pharmacology , Antithrombins/pharmacology , Heparin , Recombinant Proteins , Anticoagulants
4.
Article in English | MEDLINE | ID: mdl-39135670

ABSTRACT

The luminal environment of the mammalian epididymidis performs a dual function; sperm maturation and maintaining sperm viability. We previously identified a secretory protein (260/280KDa oligomers) of hamster cauda epididymal principal cells that binds to nonviable sperm. The 260/280KDa oligomers are composed of 64kDa FGL2 (fibrinogen-like protein-2) and 33kDa FGL1) (fibrinogen-like protein-1). The potential mechanism by which FGL2 binds to degenerative sperm is not clearly demonstrated. In this study, we report the downstream sequence of prothrombinase activity of FGL2, the identification of organelles, and characterize candidate proteins that bind FGL2. The following reaction sequence confirms that FGL2 is a phospholipid-activated serine protease; the conversion of prothrombin to thrombin by FGL2, followed by the conversion of soluble fibrinogen to insoluble fibrin polymers by thrombin. FGL2 binds intensely to tails than heads of de-membranated sperm. A spectrum of polypeptides of cauda sperm tails binds to FGL2. Proteomic analyses of 65KDa, 16kDa, and 13kDa polypeptides of tails correspond to a-Kinase anchor protein 4, glutathione peroxidase 4, and cytochrome c oxidase subunit 4, respectively. Annexin V, a calcium-dependent phosphatidylserine-binding protein localized to the flagellum and co-precipitated with FGL2. We have demonstrated a novel protective mechanism for recognizing and eliminating defective spermatozoa from viable sperm population.

5.
J Biol Chem ; 298(11): 102558, 2022 11.
Article in English | MEDLINE | ID: mdl-36183835

ABSTRACT

Activated protein C (APC) is an important anticoagulant protein that regulates thrombin generation through inactivation of factor V (FV) and activated factor V (FVa). The rate of APC inactivation of FV is slower compared to FVa, although proteolysis occurs at the same sites (Arg306, Arg506, and Arg679). The molecular basis for FV resistance to APC is unknown. Further, there is no information about how FV-short, a physiologically relevant isoform of FV with a shortened B-domain, is regulated by APC. Here, we identify the molecular determinants which differentially regulate APC recognition of FV versus FVa and uncover how FV-short can be protected from this anticoagulant pathway. Using recombinant FV derivatives and B-domain fragments, we show that the conserved basic region (BR; 963-1008) within the central portion of the B-domain plays a major role in limiting APC cleavage at Arg506. Derivatives of FV lacking the BR, including FV-short, were subject to rapid cleavage at Arg506 and were inactivated like FVa. The addition of a FV-BR fragment reversed this effect and delayed APC inactivation. We also found that anticoagulant glycoprotein TFPIα, which has a C-terminal BR homologous to FV-BR, protects FV-short from APC inactivation by delaying cleavage at Arg506. We conclude that the FV-BR plays a major role in protecting FV from APC inactivation. Using a similar mechanistic strategy, TFPIα also shields FV-short from APC. These findings clarify the resistance of FV to APC, advance our understanding of FV/FVa regulation, and establish a mechanistic framework for manipulating this reaction to alter coagulation.


Subject(s)
Factor V , Protein C , Factor V/genetics , Factor V/metabolism , Protein C/genetics , Protein C/metabolism , Anticoagulants , Peptide Hydrolases , Factor Va/genetics , Factor Va/metabolism , Thrombin/metabolism
6.
Life (Basel) ; 12(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35888115

ABSTRACT

Prothrombinase-induced clotting time (PiCT) is proposed as a rapid and inexpensive laboratory test to measure direct oral anticoagulant (DOAC) drug levels. In a prospective, multicenter cross-sectional study, including 851 patients, we aimed to study the accuracy of PiCT in determining rivaroxaban, apixaban, and edoxaban drug concentrations and assessed whether clinically relevant drug levels could be predicted correctly. Citrated plasma samples were collected, and the Pefakit® PiCT was utilized. Ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to measure drug concentrations. Cut-off levels were established using receiver-operating characteristics curves. We calculated sensitivities and specificities with respect to clinically relevant drug concentrations. Spearman's correlation coefficient between PiCT and drug concentrations was 0.85 in the case of rivaroxaban (95% CI 0.82, 0.88), 0.66 for apixaban (95% CI 0.60, 0.71), and 0.78 for edoxaban (95% CI 0.65, 0.86). The sensitivity to detect clinically relevant drug concentrations was 85.1% in the case of 30 µg L-1 (95% CI 82.0, 87.7; specificity 77.9; 72.1, 82.7), 85.7% in the case of 50 µg L-1 (82.4, 88.4; specificity 77.3; 72.5, 81.5), and 85.1% in the case of 100 µg L-1 (80.9, 88.4; specificity 73.2%; 69.1, 76.9). In conclusion, the association of PiCT with DOAC concentrations was fair, and the majority of clinically relevant drug concentrations were correctly predicted.

7.
Article in English | MEDLINE | ID: mdl-34105086

ABSTRACT

This review is a brief summary of the history of the development of the Prothrombinase complex paradigm and its incorporation into the "extrinsic pathway". It summarizes my laboratory's research from 1968 to 2012 and identifies many of the key players in these efforts.

8.
J Thromb Thrombolysis ; 52(2): 379-382, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33689095

ABSTRACT

This review is a brief summary of the history of the development of the Prothrombinase complex paradigm and its incorporation into the "extrinsic pathway". It summarizes my laboratory's research from 1968 to 2012 and identifies many of the key players in these efforts.


Subject(s)
Prothrombin/metabolism , Factor X , Factor Xa/metabolism , Humans , Kinetics , Thrombin/metabolism , Thromboplastin
9.
J Thromb Haemost ; 19(1): 7-19, 2021 01.
Article in English | MEDLINE | ID: mdl-32920971

ABSTRACT

Essentials Striated muscle myosins can promote prothrombin activation by FXa or FVa inactivation by APC. Cardiac myosin and skeletal muscle myosin are pro-hemostatic in murine tail cut bleeding models. Infused cardiac myosin exacerbates myocardial injury caused by myocardial ischemia reperfusion. Skeletal muscle myosin isoforms that circulate in human plasma can be grouped into 3 phenotypes. ABSTRACT: Two striated muscle myosins, namely skeletal muscle myosin (SkM) and cardiac myosin (CM), may potentially contribute to physiologic mechanisms for regulation of thrombosis and hemostasis. Thrombin is generated from activation of prothrombin by the prothrombinase (IIase) complex comprising factor Xa, factor Va, and Ca++ ions located on surfaces where these factors are assembled. We discovered that SkM and CM, which are abundant motor proteins in skeletal and cardiac muscles, can provide a surface for thrombin generation by the prothrombinase complex without any apparent requirement for phosphatidylserine or lipids. These myosins can also provide a surface that supports the inactivation of factor Va by activated protein C/protein S, resulting in negative feedback downregulation of thrombin generation. Although the physiologic significance of these reactions remains to be established for humans, substantive insights may be gleaned from murine studies. In mice, exogenously infused SkM and CM can promote hemostasis as they are capable of reducing tail cut bleeding. In a murine myocardial ischemia-reperfusion injury model, exogenously infused CM exacerbates myocardial infarction damage. Studies of human plasmas show that SkM antigen isoforms of different MWs circulate in human plasma, and they can be used to identify three plasma SkM phenotypes. A pilot clinical study showed that one SkM isoform pattern appeared to be linked to isolated pulmonary embolism. These discoveries enable multiple preclinical and clinical studies of SkM and CM, which should provide novel mechanistic insights with potential translational relevance for the roles of CM and SkM in the pathobiology of hemostasis and thrombosis.


Subject(s)
Cardiac Myosins , Skeletal Muscle Myosins , Animals , Blood Coagulation , Factor Va , Factor Xa , Mice , Myosins , Thrombin
10.
J Biol Chem ; 296: 100234, 2021.
Article in English | MEDLINE | ID: mdl-33376137

ABSTRACT

Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963-1008 and acidic region 2, AR2; 1493-1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which forms of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ∼1 nM) to TFPIα-BR, which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (µM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full-length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.


Subject(s)
Factor V/chemistry , Factor Va/chemistry , Lipoproteins/chemistry , Thrombin/genetics , Blood Coagulation/genetics , Factor V/genetics , Factor Va/genetics , Factor Xa/chemistry , Factor Xa/genetics , Humans , Ligands , Lipoproteins/genetics , Protein Binding/genetics , Protein Domains/genetics , Proteolysis/drug effects , Thrombin/chemistry , Thromboplastin/chemistry , Thromboplastin/genetics
11.
Toxicol Lett ; 337: 91-97, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33197555

ABSTRACT

Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor-varespladib-at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.


Subject(s)
Anticoagulants/toxicity , Coral Snakes , Elapid Venoms/toxicity , Acetates/pharmacology , Acetates/therapeutic use , Animals , Blood Coagulation/drug effects , Elapid Venoms/antagonists & inhibitors , Humans , Indoles/pharmacology , Indoles/therapeutic use , Keto Acids , Mice , Phospholipase A2 Inhibitors/pharmacology , Phospholipase A2 Inhibitors/therapeutic use , Receptors, Phospholipase A2/drug effects , Snake Bites/drug therapy , Species Specificity , Thromboplastin/metabolism , Whole Blood Coagulation Time
12.
Toxicol Lett, v. 337, p. 91-97, fev. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3309

ABSTRACT

Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor—varespladib—at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.

13.
Mol Reprod Dev ; 87(12): 1206-1218, 2020 12.
Article in English | MEDLINE | ID: mdl-33216420

ABSTRACT

Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.


Subject(s)
Epididymis/metabolism , Fibrinogen/metabolism , Peptides/metabolism , Spermatozoa/metabolism , Thromboplastin/metabolism , Animals , Cricetinae , Fibrinogen/isolation & purification , Lectins/metabolism , Male , Prothrombin/metabolism , Serine Proteases/metabolism , Thrombin/metabolism
14.
Biol Pharm Bull ; 43(10): 1591-1594, 2020.
Article in English | MEDLINE | ID: mdl-32999169

ABSTRACT

Japanese cedar (Cryptomeria japonica) pollen allergen Cry j1 increases the intracellular calcium concentration in human keratinocytes, and also impairs the epidermal barrier function. Here, we show that reduced glutathione (GSH) blocks both thrombin activation and the Cry j1-induced intracellular calcium elevation in cultured human keratinocytes, and also prevents the Cry j1-induced decrease of barrier function in ex vivo human skin.


Subject(s)
Allergens/adverse effects , Antigens, Plant/adverse effects , Cryptomeria , Glutathione/pharmacology , Keratinocytes/drug effects , Plant Proteins/adverse effects , Pollen/adverse effects , Adult , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Keratinocytes/metabolism , Organ Culture Techniques , Skin Absorption/drug effects , Skin Absorption/physiology
15.
Article in English | MEDLINE | ID: mdl-32512199

ABSTRACT

Anticoagulant toxicity is a common function of venoms produced by species within the Bitis genus. Potent inhibition of the prothrombinase complex is an identified mechanism of action for the dwarf species B. cornuta and B. xeropaga, along with some localities of B. atropos and B. caudalis. Snake venom phospholipase A2 toxins that inhibit the prothrombinase complex have been identified in snake venom, including an isolated phospholipase A2 toxin from B. caudalis. Current research is investigating the ability of the drug varespladib to inhibit snake venom phospholipase A2 toxins and reduce their toxicity. In particular, varespladib is being investigated as a treatment that could be administered prior to hospital referral which is a major necessity for species such as those from the genus Bitis, due to envenomations often occurring in remote regions of Africa where antivenom is unavailable. Using previously validated coagulation assays, this study aimed to determine if the toxins responsible for inhibition of the prothrombinase complex in the venom of four Bitis species are phospholipase A2 toxins, and if varespladib is able to neutralise this anticoagulant activity. Our results demonstrate that varespladib strongly neutralises the prothrombinase-inhibiting effects of all venoms tested in this study, and that this prothrombinase-inhibiting mechanism of anticoagulant activity is driven by phospholipase A2 class toxins in these four species. This study extends previous reports demonstrating varespladib has broad efficacy for treatment of phospholipase A2 rich snake venoms, indicating it also inhibits their anticoagulant effects mediated by prothrombinase-inhibition.


Subject(s)
Acetates/pharmacology , Antivenins/pharmacology , Blood Coagulation/drug effects , Indoles/pharmacology , Phospholipases A2/metabolism , Snake Venoms/toxicity , Viperidae/physiology , Animals , Factor V/metabolism , Factor Xa/metabolism , Humans , Keto Acids , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/chemistry , Phospholipases A2/genetics
16.
Res Pract Thromb Haemost ; 4(2): 217-223, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110751

ABSTRACT

BACKGROUND: Serum amyloid A4 (SAA4) is an apolipoprotein that is in the SAA family and it is constitutively translated. Previously, acute-phase SAA1 and SAA2 levels were associated with venous thromboembolism (VTE). OBJECTIVE: We investigated the association of plasma SAA4 with VTE and the role of SAA4 in coagulation. PATIENTS AND METHODS: The association of SAA4 with VTE in a case-control study of adult VTE subjects (N = 113 each group) and the effects of recombinant SAA4 on plasma blood coagulation assays and prothrombin activation initiated by factor Xa were evaluated. RESULTS: Plasma SAA4 levels in VTE subjects were higher vs. controls (48.1 vs. 38.4 µg/mL; P < .001). Elevated plasma SAA4 level (above the 90th percentile of controls) was associated with increased VTE occurrence (odds ratio, 3.8; 95% confidence interval, 1.8-8.0). This association remained significant after the adjustment for acute-phase SAA level, suggesting that SAA4 associated with VTE is independent of acute-phase SAA. Two isoforms of SAA4, that is, glycosylated and nonglycosylated SAA4 isoforms, were each higher in VTE patients. When recombinant SAA4 was added to plasma, it shortened factor Xa-1-stage clotting times, showing that it enhances clotting in plasma. In reaction mixtures containing purified factors Xa and Va and prothrombin, recombinant SAA4 increased prothrombin activation, showing that it enhances prothrombinase activity. CONCLUSION: Elevated plasma constitutive SAA4 levels were linked to VTE in adults, and SAA4 can enhance thrombin generation in plasma. Our data highlight a previously unknown procoagulant activity of SAA4 that appears to be related to risk of venous thrombotic events.

17.
J Thromb Haemost ; 18(1): 136-150, 2020 01.
Article in English | MEDLINE | ID: mdl-31466141

ABSTRACT

BACKGROUND: Activated coagulation factor X (FXa) is the serine protease component of prothrombinase, the physiological activator of prothrombin. Factor X Nottingham (A404T) and Taunton (R405G) are two naturally occurring mutations, identified in families with a bleeding phenotype. OBJECTIVE: To characterize these FX variants functionally. METHODS: The activity and inhibition of recombinant FX variants were quantified in plasma-based and pure component assays. RESULTS: The prothrombin times in FX-depleted plasma supplemented with FX Nottingham and Taunton were greatly increased compared to that of wild-type (WT) FX. Kinetic investigations of activated variants in the prothrombinase complex showed kcat /Km reduced ~50-fold and ~5-fold, respectively, explaining the prolonged prothrombin time (PT). The substituted residues are located in the protease domain Na+ -binding loop, important for the activity of FXa, as well as its inhibition. Both FXa Nottingham and Taunton showed reduced affinity for Na+ . Plasma-based thrombin generation assays triggered with 1 pmol/L tissue factor (TF) demonstrated only small differences in activities compared to WT FX, but large reductions at 10 pmol/L TF. Severely reduced inhibition of both FXa Nottingham and Taunton by tissue factor pathway inhibitor (TFPI) and antithrombin (AT), was shown in pure-component FXa inhibition assays. Factor Xa Nottingham and Taunton produced higher amounts of thrombin than WT FXa in pure-component prothrombinase assays in the presence of TFPI and AT, explaining the results from the plasma-based assay. CONCLUSIONS: Factor X Nottingham and Taunton both display decreased proteolytic activity. However, their reduced activity in plasma triggered by low TF can be rescued by decreased inhibition by the natural FXa inhibitors, TFPI and AT.


Subject(s)
Antithrombins , Factor X , Catalytic Domain , Factor X/metabolism , Factor Xa/metabolism , Humans , Lipoproteins , Recombinant Proteins
19.
J Thromb Haemost ; 17(12): 2056-2068, 2019 12.
Article in English | MEDLINE | ID: mdl-31364267

ABSTRACT

BACKGROUND: Activated protein C (APC)-mediated inactivation of factor (F)Va is greatly enhanced by protein S. For inactivation to occur, a trimolecular complex among FVa, APC, and protein S must form on the phospholipid membrane. However, direct demonstration of complex formation has proven elusive. OBJECTIVES: To elucidate the nature of the phospholipid-dependent interactions among APC, protein S, and FVa. METHODS: We evaluated binding of active site blocked APC to phospholipid-coated magnetic beads in the presence and absence of protein S and/or FVa. The importance of protein S and FV residues were evaluated functionally. RESULTS: Activated protein C alone bound weakly to phospholipids. Protein S mildly enhanced APC binding to phospholipid surfaces, whereas FVa did not. However, FVa together with protein S enhanced APC binding (>14-fold), demonstrating formation of an APC/protein S/FVa complex. C4b binding protein-bound protein S failed to enhance APC binding, agreeing with its reduced APC cofactor function. Protein S variants (E36A and D95A) with reduced APC cofactor function exhibited essentially normal augmentation of APC binding to phospholipids, but diminished APC/protein S/FVa complex formation, suggesting involvement in interactions dependent upon FVa. Similarly, FVaNara (W1920R), an APC-resistant FV variant, also did not efficiently incorporate into the trimolecular complex as efficiently as wild-type FVa. FVa inactivation assays suggested that the mutation impairs its affinity for phospholipid membranes and with protein S within the complex. CONCLUSIONS: FVa plays a central role in the formation of its inactivation complex. Furthermore, membrane proximal interactions among FVa, APC, and protein S are essential for its cofactor function.


Subject(s)
Blood Coagulation , Calcium-Binding Proteins/metabolism , Factor Va/metabolism , Phospholipids/metabolism , Protein C/metabolism , Protein S/metabolism , Binding Sites , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Enzyme Activation , Factor Va/chemistry , Factor Va/genetics , HEK293 Cells , Humans , Models, Molecular , Multiprotein Complexes , Phospholipids/chemistry , Protein Binding , Protein C/chemistry , Protein Conformation , Protein S/chemistry , Protein S/genetics , Structure-Activity Relationship , Thrombin/metabolism , Thromboplastin/metabolism
20.
J Thromb Haemost ; 17(8): 1229-1239, 2019 08.
Article in English | MEDLINE | ID: mdl-31102425

ABSTRACT

Blood coagulation factor Va serves an indispensable role in hemostasis as cofactor for the serine protease factor Xa. In the presence of an anionic phospholipid membrane and calcium ions, factors Va and Xa assemble into the prothrombinase complex. Following formation of the ternary complex with the macromolecular zymogen substrate prothrombin, the latter is rapidly converted into thrombin, the key regulatory enzyme of coagulation. Over the years, multiple binding sites have been identified in factor Va that play a role in the interaction of the cofactor with factor Xa, prothrombin, or the anionic phospholipid membrane surface. In this review, an overview of the currently available information on these interactive sites in factor Va is provided, and data from biochemical approaches and 3D structural protein complex models are discussed. The structural models have been generated in recent years and provide novel insights into the molecular requirements for assembly of both the prothrombinase and the ternary prothrombinase-prothrombin complexes. Integrated knowledge of functionally important regions in factor Va will allow for a better understanding of factor Va cofactor activity.


Subject(s)
Blood Coagulation , Factor Va/metabolism , Prothrombin/metabolism , Thromboplastin/metabolism , Binding Sites , Cell Membrane/metabolism , Factor Va/chemistry , Factor Xa/metabolism , Humans , Models, Molecular , Phospholipids/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Prothrombin/chemistry , Structure-Activity Relationship , Thromboplastin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL