Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.322
Filter
1.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003055

ABSTRACT

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Subject(s)
Metals, Heavy , Soil Pollutants , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Soil Pollutants/metabolism , Oxidation-Reduction , Pseudomonas/metabolism , Manganese , Iron/chemistry , Iron/metabolism , Soil/chemistry , Biodegradation, Environmental , Soil Microbiology
2.
Comput Struct Biotechnol J ; 23: 2851-2860, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39100803

ABSTRACT

Background: Preterm premature rupture of membranes (PPROM) contributes to over one-third of preterm births, and PPROM infants are more susceptible to infections. However, the risk factors remain poorly understood. We here aim to investigate the association of duration of premature rupture of membranes (PROM) and environmental microbiota with the gut microbiota and infection in PPROM infants. Methods: Forty-six premature infants were recruited from two hospitals, and infant fecal and environmental samples were collected. 16 s rRNA sequencing was performed to analyze the fecal and environmental microbiome. Human inflammatory cytokines in cord vein plasma were measured. Results: The gut microbiota composition of PPROM infants was different from that of non-PPROM infants, and the microbiome phenotypes were predicted to be associated with a higher risk of infection, further evidenced by the significantly increased levels of IL-6 and IL-8 in cord vein plasma of PPROM infants. The diversity of the gut microbiota in PPROM infants increased significantly as the duration of PROM excessed 12 h, and Pseudomonas contributed significantly to the dynamic changes. The Pseudomonas species in the gut of PPROM infants were highly homologous to those detected in the ward environment, suggesting that prolonged PROM is associated with horizontal transmission of environmental pathogens, leading to a higher risk of infection. Conclusions: This study highlights that the duration of PROM is associated with the accumulation of environmental pathogens in the gut of PPROM infants, which is a risk factor for nosocomial infections. Improving environmental hygiene could be effective in optimizing the clinical care of PPROM infants.

3.
Proc Natl Acad Sci U S A ; 121(33): e2406234121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102545

ABSTRACT

Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host. Understanding bacterial physiology is vital because it dictates host response and bacterial interactions with antimicrobials. Thus, our goal was to develop an animal model that accurately recapitulates bacterial physiology in human infection. The system we chose to model was a chronic Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF). To accomplish this goal, we leveraged a framework that we recently developed to evaluate model accuracy by calculating the percentage of bacterial genes that are expressed similarly in a model to how they are expressed in their infection environment. We combined two complementary models of P. aeruginosa infection-an in vitro synthetic CF sputum model (SCFM2) and a mouse acute pneumonia model. This combined model captured the chronic physiology of P. aeruginosa in CF better than the standard mouse infection model, showing the power of a data-driven approach to refining animal models. In addition, the results of this work challenge the assumption that a chronic infection model requires long-term colonization.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Pseudomonas Infections , Pseudomonas aeruginosa , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/pathogenicity , Animals , Pseudomonas Infections/microbiology , Mice , Humans , Respiratory Tract Infections/microbiology , Host-Pathogen Interactions , Sputum/microbiology
4.
Article in English | MEDLINE | ID: mdl-39103577

ABSTRACT

Untreated release of toxic synthetic and colorful dyes is a serious threat to the environment. Every year, several thousand gallons of dyes are being disposed into the water resources without any sustainable detoxification. The accumulation of hazardous dyes in the environment poses a severe threat to the human health, flora, fauna, and microflora. Therefore, in the present study, a lignin peroxidase enzyme from Pseudomonas fluorescence LiP-RL5 has been employed for the maximal detoxification of selected commercially used dyes. The enzyme production from the microorganism was enhanced ~ 20 folds using statistical optimization tool, response surface methodology. Four different combinations (pH, production time, seed age, and inoculum size) were found to be crucial for the higher production of LiP. The crude enzyme showed decolorization action on commonly used commercial dyes such as Crystal violet, Congo red, Malachite green, and Coomassie brilliant blue. Successful toxicity mitigation of these dyes culminated in the improved seed germination in three plant species, Vigna radiate (20-60%), Cicer arietinum (20-40%), and Phaseolus vulgaris (10-25%). The LiP treated dyes also exhibit reduced bactericidal effects against four common resident microbial species, Escherichia coli (2-10 mm), Bacillus sp. (4-8 mm), Pseudomonas sp. (2-8 mm), and Lactobacillus sp. (2-10 mm). Therefore, apart from the tremendous industrial applications, the LiP from Pseudomonas fluorescence LiP-RL5 could be a potential biocatalyst for the detoxification of synthetic dyes.

5.
Equine Vet J ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103748

ABSTRACT

Three bacteria extensively acknowledged as venereal pathogens with the potential to induce endometritis include Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), specific strains of Pseudomonas aeruginosa, and certain capsule types of Klebsiella pneumoniae. The United Kingdom's Horserace Betting Levy Board recommends pre-breeding screening for these bacteria in their International Codes of Practice and >20 000 samples are tested per annum in the United Kingdom alone. While the pathogenesis and regulatory importance of CEM are well established, an evaluation of the literature pertaining to venereal transmission of P. aeruginosa and K. pneumoniae was lacking. The aim of this review was to evaluate published literature and determine the significance of P. aeruginosa and K. pneumoniae as venereal pathogens in horses. Literature definitively demonstrating venereal transmission was not available. Instead, application of molecular typing methods suggested that common environmental sources of contamination, such as water, or fomites be considered as modes of transmission. The presence of organisms with pathogenic potential on a horse's external genitalia did not predict venereal transmission with resultant endometritis and reduced fertility. These findings may prompt further investigation using molecular technologies to confirm or exclude venereal spread and investigation of alternative mechanisms of transmission are indicated.

6.
Article in English | MEDLINE | ID: mdl-39105969

ABSTRACT

In this study, we evaluated the performance of the EUCAST RAST method on a collection of 154 clinical strains of P. aeruginosa, including strains resistant to ceftazidime and carbapenems. While the test is convenient for routine laboratories, we observed significant rates of VME (ranging from 0.0 to 15.0%) and ME (ranging from 1.3 to 16.3%) after 6 h, particularly for key antibiotics such as ceftazidime, piperacillin/tazobactam, and meropenem. Extending the incubation time to 8 h may improve results (CA ranging from 87.2 to 99%), but caution is required in interpretation due to persistence of VME (ranging from 0.0 to 15.6%) and ME (ranging from 0.0 to 11.7%).

7.
AMB Express ; 14(1): 87, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090255

ABSTRACT

Resistance to antibiotics is a critical growing public health problem that desires urgent action to combat. To avoid the stress on bacterial growth that evokes the resistance development, anti-virulence agents can be an attractive strategy as they do not target bacterial growth. Quorum sensing (QS) systems play main roles in controlling the production of diverse virulence factors and biofilm formation in bacteria. Thus, interfering with QS systems could result in mitigation of the bacterial virulence. Cilostazol is an antiplatelet and a vasodilator FDA approved drug. This study aimed to evaluate the anti-virulence activities of cilostazol in the light of its possible interference with QS systems in Pseudomonas aeruginosa. Additionally, the study examines cilostazol's impact on the bacterium's ability to induce infection in vivo, using sub-inhibitory concentrations to minimize the risk of resistance development. In this context, the biofilm formation, the production of virulence factors and influence on the in vivo ability to induce infection were assessed in the presence of cilostazol at sub-inhibitory concentration. Furthermore, the outcome of combination with antibiotics was evaluated. Cilostazol interfered with biofilm formation in P. aeruginosa. Moreover, swarming motility, biofilm formation and production of virulence factors were significantly diminished. Histopathological investigation revealed that liver, spleen and kidney tissues damage was abolished in mice injected with cilostazol-treated bacteria. Cilostazol exhibited a synergistic outcome when used in combination with antibiotics. At the molecular level, cilostazol downregulated the QS genes and showed considerable affinity to QS receptors. In conclusion, Cilostazol could be used as adjunct therapy with antibiotics for treating Pseudomonal infections. This research highlights cilostazol's potential to combat bacterial infections by targeting virulence mechanisms, reducing the risk of antibiotic resistance, and enhancing treatment efficacy against P. aeruginosa. These findings open avenues for repurposing existing drugs, offering new, safer, and more effective infection control strategies.

8.
BMC Microbiol ; 24(1): 290, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095741

ABSTRACT

INTRODUCTION: Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD: Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT: The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION: When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.


Subject(s)
Anti-Bacterial Agents , Biofilms , Hormesis , Pseudomonas aeruginosa , Zinc Oxide , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/growth & development , Zinc Oxide/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Hormesis/drug effects , Humans , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Cystic Fibrosis/microbiology , Gene Expression Regulation, Bacterial/drug effects , X-Ray Diffraction , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Dose-Response Relationship, Drug
9.
Front Microbiol ; 15: 1386830, 2024.
Article in English | MEDLINE | ID: mdl-39091310

ABSTRACT

Introduction: Pseudomonas aeruginosa is present throughout nature and is a common opportunistic pathogen in the human body. Carbapenem antibiotics are typically utilized as a last resort in the clinical treatment of multidrug-resistant infections caused by P. aeruginosa. The increase in carbapenem-resistant P. aeruginosa poses an immense challenge for the treatment of these infections. Bacteriophages have the potential to be used as antimicrobial agents for treating antibiotic-resistant bacteria. Methods and Results: In this study, a new virulent P. aeruginosa phage, Phage_Pae01, was isolated from hospital sewage and shown to have broad-spectrum antibacterial activity against clinical P. aeruginosa isolates (83.6%). These clinical strains included multidrug-resistant P. aeruginosa and carbapenem-resistant P. aeruginosa. Transmission electron microscopy revealed that the phage possessed an icosahedral head of approximately 80 nm and a long tail about 110 m, indicating that it belongs to the Myoviridae family of the order Caudovirales. Biological characteristic analysis revealed that Phage_Pae01 could maintain stable activity in the temperature range of 4~ 60°C and pH range of 4 ~ 10. According to the in vitro lysis kinetics of the phage, Phage_Pae01 demonstrated strong antibacterial activity. The optimal multiplicity of infection was 0.01. The genome of Phage_Pae01 has a total length of 93,182 bp and contains 176 open reading frames (ORFs). The phage genome does not contain genes related to virulence or antibiotic resistance. In addition, Phage_Pae01 effectively prevented the formation of biofilms and eliminated established biofilms. When Phage_Pae01 was combined with gentamicin, it significantly disrupted established P. aeruginosa biofilms. Conclusion: We identified a novel P. aeruginosa phage and demonstrated its effective antimicrobial properties against P. aeruginosa in both the floating and biofilm states. These findings offer a promising approach for the treatment of drug-resistant bacterial infections in clinical settings.

10.
Front Plant Sci ; 15: 1408833, 2024.
Article in English | MEDLINE | ID: mdl-39091312

ABSTRACT

Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.

11.
Microbiol Res ; 287: 127861, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094394

ABSTRACT

Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium Pseudomonas pergaminensis F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77ΔresS/R mutant had a greater impact on Fe and Al release from biotite than did the F77ΔresS or F77ΔresR mutant. The F77∆resS/R mutant exhibited significantly reduced Fe and Al concentrations by 21-61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆resS/R mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77ΔresS/R mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3',5'-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77ΔresS/R mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.

12.
J Biol Chem ; : 107618, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095026

ABSTRACT

Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA) - an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid binding domain of CFAS enzymes, perhaps suggesting distinct membrane binding properties among different orthologues. This work lays an important foundation for further characterization of CFAS in Pseudomonas aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.

13.
Adv Mater ; : e2407268, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091071

ABSTRACT

Clinical multidrug-resistant Pseudomonas aeruginosa (MDR-PA) is the leading cause of refractory bacterial keratitis (BK). However, the reported BK treatment methods lack biosecurity and bioavailability, which usually causes irreversible visual impairment and even blindness. Herein, for BK caused by clinically isolated MDR-PA infection, armed phages are modularized with the type I photosensitizer (PS) ACR-DMT, and an intelligent phage eyedrop is developed for combined phagotherapy and photodynamic therapy (PDT). These eyedrops maximize the advantages of bacteriophages and ACR-DMT, enabling more robust and specific targeting killing of MDR-PA under low oxygen-dependence, penetrating and disrupting biofilms, and efficiently preventing biofilm reformation. Altering the biofilm and immune microenvironments alleviates inflammation noninvasively, promotes corneal healing without scar formation, protects ocular tissues, restores visual function, and prevents long-term discomfort and pain. This strategy exhibits strong scalability, enables at-home treatment of ocular surface infections with great patient compliance and a favorable prognosis, and has significant potential for clinical application.

14.
Article in English | MEDLINE | ID: mdl-39088028

ABSTRACT

It is of fundamental interest to research and develop innovative biotechnologies, as well as bioproducts that replace or are alternatives to those of non-renewable origin, such as biosurfactants in relation to traditional surfactants used in various sectors. Consequently, there are a large number of experimental studies addressing different subjects, especially with the use of bacteria of the genus Pseudomonas; however, there is a lack of work that demonstrates the evaluation of this science produced to date. Therefore, this article discusses the production of biosurfactants by Pseudomonas with the aim of surveying and analyzing experimental articles on this topic. To realize this, a systematic search was carried out with well-defined temporal space, databases, and inclusion and exclusion criteria, based on metric studies that guided what information would be collected and the method of evaluation. Therefore, a large number of articles were selected, which demonstrated Pseudomonas aeruginosa as the bioagent mostly used in the tests, which aimed to improve the process in the area. Furthermore, interest in this field has increased over the years, predominantly in emerging market countries, where the most prominent authors on the topic are found. Therefore, it is necessary that there is an expansion of interest in the area to make the production of biosurfactants cheaper in areas that currently have greater development deficiencies, such as means of purifying the bioprocess and reducing foam formation in the bioprocess.

15.
Article in English | MEDLINE | ID: mdl-39107161

ABSTRACT

OBJECTIVES: Meropenem is commonly used against Pseudomonas aeruginosa. Traditionally, the time unbound antibiotic concentration exceeds the MIC (fT>MIC) is used to select carbapenem regimens. We aimed to characterize the effects of different baseline resistance mechanisms on bacterial killing and resistance emergence; evaluate whether fT>MIC can predict these effects; and, develop a novel Quantitative and Systems Pharmacology (QSP) model to describe the effects of baseline resistance mechanisms on the time-course of bacterial response. METHODS: Seven isogenic P. aeruginosa strains with a range of resistance mechanisms and MICs were used in 10-day hollow-fiber infection model studies. Meropenem pharmacokinetic profiles were simulated for various regimens (t1/2,meropenem = 1.5 h). All viable counts on drug-free, 3 × MIC, and 5 × MIC meropenem-containing agar across all strains, five regimens, and control (n = 90 profiles) were simultaneously subjected to QSP modeling. Whole genome sequencing was completed for total population samples and emergent resistant colonies at 239 h. RESULTS: Regimens achieving ≥98%fT>1×MIC suppressed resistance emergence of the mexR knockout strain. Even 100%fT>5 × MIC failed to achieve this against the strain with OprD loss and the ampD and mexR double-knockout strain. Baseline resistance mechanisms affected bacterial outcomes, even for strains with the same MIC. Genomic analysis revealed that pre-existing resistant subpopulations drove resistance emergence. During meropenem exposure, mutations in mexR were selected in strains with baseline oprD mutations, and vice versa, confirming these as major mechanisms of resistance emergence. Secondary mutations occurred in lysS or argS, coding for lysyl and arginyl tRNA synthetases, respectively. DISCUSSION: The QSP model well-characterized all bacterial outcomes of the seven strains simultaneously, which fT>MIC could not.

16.
Clin Infect Dis ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108079

ABSTRACT

BACKGROUND: The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant (AMR) infections. This guidance document focuses on infections caused by extended-spectrum ß-lactamase-producing Enterobacterales (ESBL-E), AmpC ß- lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Enterobacterales (CRE), Pseudomonas aeruginosa with difficult-to-treat resistance (DTR P. aeruginosa), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia. This updated document replaces previous versions of the guidance document. METHODS: A panel of six infectious diseases specialists with expertise in managing antimicrobial- resistant infections formulated questions about the treatment of infections caused by ESBL-E, AmpC-E, CRE, DTR P. aeruginosa, CRAB, and S. maltophilia. Because of differences in the epidemiology of AMR and availability of specific anti-infectives internationally, this document focuses on the treatment of AMR infections in the United States. RESULTS: Preferred and alternative suggested treatment approaches are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, transitioning to oral therapy, duration of therapy, and other management considerations are discussed briefly. Suggested approaches apply for both adult and pediatric populations, although suggested antibiotic dosages are provided only for adults. CONCLUSIONS: The field of AMR is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of AMR infections. This document is current as of December 31, 2023 and will be updated periodically. The most current version of this document, including date of publication, is available at www.idsociety.org/practice-guideline/amr-guidance/.

17.
Pediatr Pulmonol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109912

ABSTRACT

INTRODUCTION: Pseudomonas aeruginosa AUST-03 (ST242) has been reported to cause epidemics in people with CF (pwCF) from Australia and has been associated with multidrug resistance and increased morbidity and mortality. Here, we report an epidemic P. aeruginosa (AUST-03) strain in South African pwCF detected at a public hospital and characterize the genomic antibiotic resistance determinants. METHODS: The P. aeruginosa AUST-03 (ST242) study isolates were analysed with whole genome sequencing using the Illumina NextSeq2000 platform. Raw sequencing reads were processed using the Jekesa pipeline and multilocus sequence typing and genomic antibiotic resistance characterization was performed using public databases. Genetic relatedness between the study isolates and global P. aeruginosa ST242 from public databases was determined using a maximum-likelihood phylogenetic tree. Antibiotic susceptibility testing was performed using the disk diffusion and broth microdilution techniques. RESULTS: A total of 11 P. aeruginosa AUST-03 isolates were isolated from two children with CF. The majority (8/11) of these isolates were multidrug-resistant (MDR) or extensively drug resistant; and the multidrug efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM were the most clinically relevant antibiotic resistance determinants and were detected in all of the isolates. The study isolates were the most closely related to a 2020 P. aeruginosa AUST-03 (ST242) CF isolate from Russia. CONCLUSION: Epidemic MDR P. aeruginosa strains are present at South African public CF clinics and need to be considered when implementing segregation and infection control strategies to prevent possible spread and outbreaks.

18.
Microb Pathog ; 194: 106833, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39096943

ABSTRACT

Bacterial biofilms pose a significant threat to healthcare due to their recalcitrance to antibiotics and disinfectants. This study explores the anti-biofilm potential of Bacillus licheniformis cell-free culture supernatant (CFS) and its derived silver nanoparticles (bSNPs) against Staphylococcus aureus and Pseudomonas aeruginosa. The CFS exhibited potent anti-biofilm activity against both bacterial species, even at low concentrations, while devoid of significant bactericidal effects, mitigating resistance risks. Characterization studies revealed the non-proteinaceous nature and thermal stability of the CFS's anti-biofilm agent, suggesting a robust and heat-resistant structure. Green synthesis of bSNPs from CFS resulted in nanoparticles with significant anti-biofilm properties, particularly against P. aeruginosa, indicating differences in susceptibility between the bacterial species. Epifluorescence microscopy confirmed bSNPs' ability to inhibit and partially disrupt biofilm formation without inducing cellular lysis. The study highlights the potential of B. licheniformis CFS and bSNPs as promising biofilm control agents, offering insights into their mechanisms of action and broad-spectrum efficacy. Further research elucidating the underlying molecular mechanisms and identifying specific bioactive compounds is warranted for the translation of these findings into clinically relevant applications for combating biofilm-associated infections.

19.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126017

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in compromised hosts. P. aeruginosa infections are difficult to treat because of the inherent ability of the bacteria to develop antibiotic resistance, secrete a variety of virulence factors, and form biofilms. The secreted aminopeptidase (PaAP) is an emerging virulence factor, key in providing essential low molecular weight nutrients and a cardinal modulator of biofilm development. PaAP is therefore a new potential target for therapy of P. aeruginosa infections. The present review summarizes the current knowledge of PaAP, with special emphasis on its biochemical and enzymatic properties, activation mechanism, biological roles, regulation, and structure. Recently developed specific inhibitors and their potential as adjuncts in the treatment of P. aeruginosa infections are also described.


Subject(s)
Aminopeptidases , Pseudomonas aeruginosa , Virulence Factors , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/metabolism , Aminopeptidases/metabolism , Humans , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Biofilms/growth & development , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Animals
20.
Biochem Biophys Res Commun ; 737: 150520, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128223

ABSTRACT

Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis. In this study, srbA sRNA has been shown to play a diverse role in regulating cellular metabolism and the production of different virulence factors in P. aeruginosa. srbA was found to control the TCA cycle, a key regulatory pathway for cellular metabolism and energy production, by regulating three main enzymes: citrate synthase (gltA), isocitrate dehydrogenase (icd), and α-ketoglutarate dehydrogenase E1 subunit (sucA) at both the transcriptional and translational levels. By modulating the TCA cycle, srbA could help the bacteria to adapt nutritional stress by lowering energy consumption. Additionally, srbA has been found to differentially regulate production of various virulence factors such as rhamnolipid, elastase, LasA protease, and pyocyanin under both nutrient-rich and nutrient-limiting conditions. It could also influence motilities in P. aeruginosa, linked to biofilm formation and pathogenicity. Thus, srbA might hold a promise in the research area for identifying virulence pathways and developing novel therapeutic targets to combat the global pathogenic threat of P. aeruginosa.

SELECTION OF CITATIONS
SEARCH DETAIL