Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 614
Filter
1.
Front Med (Lausanne) ; 11: 1437376, 2024.
Article in English | MEDLINE | ID: mdl-39267976

ABSTRACT

Objective: This study utilizes the FDA Adverse Event Reporting System (FAERS) to investigate adverse drug event (ADE) signals linked to quinolones use (ciprofloxacin, moxifloxacin, levofloxacin, ofloxacin) in minors, offering insights for clinical use. Methods: Minors were categorized into four age groups. ADE reports for these quinolones from the first quarter of 2015 to the third quarter of 2023 were extracted from the FAERS database. Data analysis used reporting odds ratio (ROR) and the MHRA method. Results: Most ADE cases in minors involved ciprofloxacin (575)and levofloxacin (477). In the infant group, various injury, poisoning, and procedural complication events were more frequently associated with ciprofloxacin, levofloxacin, and moxifloxacin (19.83%, 31.25%, and 100.00%, respectively). In the preschool children group, psychiatric disorders were more frequently reported with levofloxacin and ofloxacin use (59.00% and 47.62%, respectively). Ocular disorders were notably associated with moxifloxacin in the children group (62.50%), In the adolescent group, more gastrointestinal diseases occurred with ciprofloxacin (12.96%). Conclusion: ADE occurrence with quinolones in minors varies by age. Strict adherence to indications, rational use, avoiding prolonged use, and monitoring for short-term reactions are essential. Enhanced monitoring of interactions and drug education are crucial to reducing ADE.

2.
Pharmacol Res ; : 107431, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307213

ABSTRACT

The nucleic acid topoisomerases (TOP) are an evolutionary conserved mechanism to solve topological problems within DNA and RNA that have been historically well-established as a chemotherapeutic target. During investigation of trends within clinical trials, we have identified a very high number of clinical trials involving TOP inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 233 unique molecules with TOP-inhibiting activity. In this review, we provide an overview of the clinical drug development highlighting advances in current clinical uses and discussing novel drugs and indications under development. A wide range of bacterial infections, along with solid and hematologic neoplasms, represent the bulk of clinically approved indications. Negative ADR profile and drug resistance among the antibacterial TOP inhibitors and anthracycline-mediated cardiotoxicity in the antineoplastic TOP inhibitors are major points of concern, subject to continuous research efforts. Ongoing development continues to focus on bacterial infections and cancer; however, there is a degree of diversification in terms of novel drug classes and previously uncovered indications, such as glioblastoma multiforme or Clostridium difficile infections. Preclinical studies show potential in viral, protozoal, parasitic and fungal infections as well and suggest the emergence of a novel target, TOP IIIß. We predict further growth and diversification of the field thanks to the large number of experimental TOP inhibitors emerging.

3.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275120

ABSTRACT

Tetrahydroquinolines are key structures in a variety of natural products with diverse pharmacological utilities and other applications. A series of 3,4-diaryl-5,7-dimethoxy-1,2,3,4-tetrahydroquinolines were synthesized in good yield by reacting 3-aryl-5,7-dimethoxy-2,3-dihydroquinolin-4-ones with different Grignard reagents followed by the dehydration of the intermediate phenolic compounds. Subsequent reduction and deprotection were carried out to achieve the desired tetrahydroquinolone moiety. The lead compound 3c showed low micromolar inhibition of various cancer cell lines. Demethylation under different reaction conditions was also investigated to afford the corresponding monohydroxy analogues.


Subject(s)
Antineoplastic Agents , Quinolines , Humans , Quinolines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Molecular Structure , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
4.
Ecotoxicol Environ Saf ; 285: 117087, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39317069

ABSTRACT

Tailwater-based hydroponic vegetable is a promising strategy for domestic wastewater recycling. However, the effect of residual antibiotics on the hydroponic vegetable system and the relation between hydroponic culture parameters and the residual water quality are still unclear. Here, the typical antibiotic Levofloxacin (LVFX) was employed, and the effect of LVFX (5 mg/L) on the residual water quality, plant growth and microbial community of water spinach hydroponic culture system were investigated under different hydraulic residence times (HRT). Obvious toxic effects on water spinach were observed, and the highest removal rate of LVFX (about 6 %) and TN (25.67±1.43 %) was observed when HRT was 7 days. Hydroponic culture increased the microbial abundance, diversity, and microbial community stability. To optimize the hydroponic culture, actual sewage plant tailwater spiked with 20 µg/L LVFX, along with three common planting substrates (sponge, ceramsite, and activated carbon) were used for the hydroponic culture of lettuce (seasonal reasons). The inhibition effect of LVFX on the removal of NO3--N and TN was observed even as the LVFX concentration decreased significantly (from 14.62 ± 0.44 µg/L to 0.65 ± 0.07 µg/L). The best growth situation of lettuce and removal rates of NH4+-N, NO3--N, TN, especially LVFX (up to 95.65 ± 0.54 %) were observed in the activated carbon treated group. The overall results indicate the negative effect of residual antibiotics on the hydroponic vegetable systems, and adding activated carbon as substrate is an effective strategy for supporting plant growth and controlling discharged risk.

5.
Antibiotics (Basel) ; 13(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39200042

ABSTRACT

Sepsis is a leading cause of death in Intensive Care Units. Despite its prevalence, sepsis remains insufficiently understood, with no substantial qualitative improvements in its treatment in the past decades. Immunomodulatory agents may hold promise, given the significance of TNF-α and IL-1ß as sepsis mediators. This study examines the immunomodulatory effects of moxifloxacin, a fluoroquinolone utilized in clinical practice. THP1 cells were treated in vitro with either PBS or moxifloxacin and subsequently challenged with lipopolysaccharide (LPS) or E. coli. C57BL/6 mice received intraperitoneal injections of LPS or underwent cecal ligation and puncture (CLP), followed by treatment with PBS, moxifloxacin, meropenem or epirubicin. Atm-/- mice underwent CLP and were treated with either PBS or moxifloxacin. Cytokine and organ lesion markers were quantified via ELISA, colony-forming units were assessed from mouse blood samples, and DNA damage was evaluated using a comet assay. Moxifloxacin inhibits the secretion of TNF-α and IL-1ß in THP1 cells stimulated with LPS or E. coli. Intraperitoneal administration of moxifloxacin significantly increased the survival rate of mice with severe sepsis by 80% (p < 0.001), significantly reducing the plasma levels of cytokines and organ lesion markers. Notably, moxifloxacin exhibited no DNA damage in the comet assay, and Atm-/- mice were similarly protected following CLP, boasting an overall survival rate of 60% compared to their PBS-treated counterparts (p = 0.003). Moxifloxacin is an immunomodulatory agent, reducing TNF-α and IL-1ß levels in immune cells stimulated with LPS and E. coli. Furthermore, moxifloxacin is also protective in an animal model of sepsis, leading to a significant reduction in cytokines and organ lesion markers. These effects appear unrelated to its antimicrobial activity or induction of DNA damage.

6.
Microbiol Spectr ; 12(10): e0012224, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39150249

ABSTRACT

Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaßN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaßN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Ciprofloxacin , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Membrane Transport Proteins , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Humans , Klebsiella Infections/microbiology , Ciprofloxacin/pharmacology , Levofloxacin/pharmacology
7.
Life (Basel) ; 14(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202735

ABSTRACT

Background: The widespread use of fluoroquinolones has been associated with the formation, dissection, and rupture of aortic aneurysms. Arterial biomarkers are established predictors of cardiovascular events. The present study was designed to investigate the effect of quinolones on arterial stiffness and aortic size for the first time. Methods: We studied 28 subjects receiving short-term (<15 days) antibiotic therapy involving quinolones and 27 age- and sex-matched subjects receiving an alternative to quinolone antibiotics. The follow-up period was approximately 2 months. The study's primary endpoint was the carotid-femoral pulse wave velocity (cfPWV) difference between the two groups 2 months after therapy initiation. Secondary endpoints were the augmentation index corrected for heart rate (AIx@75) and sonographically assessed aortic diameters 2 months after the initial treatment. Results: Subjects had similar values of arterial biomarkers, blood pressure measurements, and aortic diameters at baseline. At follow-up, no significant change was observed between the two groups regarding the hemodynamic parameters and arterial biomarkers (p > 0.05 for all), i.e., cfPWV (7.9 ± 2.6 m/s for the control group vs. 8.1 ± 2.4 m/s for the fluoroquinolones group; p = 0.79), AIx@75 (22.6 ± 9.0% for the control group vs. 26.6 ± 8.1% for the fluoroquinolones group; p = 0.09), and aortic diameters. Conclusions: To our knowledge, FRAGILES is the first study to provide insights into the possible effects of fluoroquinolones on arterial biomarkers, showing that, at least in the short term, treatment with fluoroquinolones does not affect aortic function and diameter.

8.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125020

ABSTRACT

In order to improve the drug-likeness qualities, the antimalarial endochin-like quinolone (ELQ) scaffold has been modified by replacing the 4-(trifluoromethoxy)phenyl portion with an isoidide unit that is further adjustable by varying the distal O-substituents. As expected, the water solubilities of the new analogs are greatly improved, and the melting points are lower. However, the antimalarial potency of the new analogs is reduced to EC50 > 1 millimolar, a result ascribable to the hydrophilic nature of the new substitution.


Subject(s)
Antimalarials , Quinolones , Quinolones/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Molecular Structure , Humans
10.
BMC Pharmacol Toxicol ; 25(1): 39, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987799

ABSTRACT

BACKGROUND: Statins are widely used in cardiovascular disease (CVD) as a common lipid-lowering drug, while quinolones are widely used for the treatment of infectious diseases. It is common to see CVD in combination with infectious diseases, therefore it is often the case that statins and quinolones are used in combination. Data suggest combinations of statin and quinolone may be associated with potentially life-threatening myopathy, rhabdomyolysis and acute hepatitis. This systematic review aims to characterize data regarding patients affected by the statin-quinolone interaction. METHODS: The purpose of this systematic review was to collect and evaluate the evidence surrounding statin-quinolone drug interactions and to discuss related risk mitigation strategies. The following databases were searched: PubMed (Medline), Embase, Scopus, and Cochrane Library. The systematic electronic literature search was conducted with the following search terms. In this study, three types of search terms were used: statins-related terms, quinolones-related terms, and drug interactions-related terms. RESULTS: There were 16 case reports that met the criteria for qualitative analysis. Patients were involved in the following adverse reactions: rhabdomyolysis (n = 12), acute hepatitis (n = 1), muscle weakness (n = 1), hip tendinopathy (n = 1), or myopathy (n = 1). In the included literature, patients vary in the dose and type of statins they take, including simvastatin (n = 10) at a dose range of 20-80 mg/d and atorvastatin (n = 4) at a dose of 80 mg/d. There were 2 patients with unspecified statin doses, separately using simvastatin and atorvastatin. The quinolones in combination were ciprofloxacin (n = 9) at a dose range of 800-1500 mg/d, levofloxacin (n = 6) at a dose range of 250-1000 mg/d, and norfloxacin (n = 1) in an unspecified dose range. 81% of the case patients were over 60 years of age, and about 1/3 had kidney-related diseases such as diabetic nephropathy, post-transplantation, and severe glomerulonephritis. Nearly two-third of the patients were on concomitant cytochrome P450 3A4 (CYP3A4) inhibitors, P-glycoprotein (P-gp) inhibitors, or organic anion transporting polypeptide 1B1 (OATP1B1) inhibitors. CONCLUSION: Patients treated with statin-quinolone combination should be monitored more closely for changes in aspartate aminotransferase or creatine kinase (CK) levels, and muscle symptoms, especially in patients with ciprofloxacin or levofloxacin, with simvastatin and high-dose atorvastatin, over 60 years of age, with kidney-related diseases, and on concomitant CYP3A4 inhibitors.


Subject(s)
Drug Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Quinolones , Humans , Anti-Bacterial Agents/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Quinolones/therapeutic use , Quinolones/adverse effects , Rhabdomyolysis/chemically induced
11.
Eur J Clin Microbiol Infect Dis ; 43(8): 1559-1567, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856826

ABSTRACT

BACKGROUND: Evidence regarding the best antibiotic regimen and the route of administration to treat acute focal bacterial nephritis (AFBN) is scarce. The aim of the present study was to compare the effectiveness of intravenous (IV) ß-lactam antibiotics versus oral quinolones. METHODS: This is a retrospective single centre study of patients diagnosed with AFBN between January 2017 and December 2018 in Hospital Universitari Vall d'Hebron, Barcelona (Spain). Patients were identified from the diagnostic codifications database. Patients treated with oral quinolones were compared with those treated with IV ß-lactam antibiotics. Therapeutic failure was defined as death, relapse, or evolution to abscess within the first 30 days. RESULTS: A total of 264 patients fulfilled the inclusion criteria. Of those, 103 patients (39%) received oral ciprofloxacin, and 70 (26.5%) IV ß-lactam. The most common isolated microorganism was Escherichia coli (149, 73.8%) followed by Klebsiella pneumoniae (26, 12.9%). Mean duration of treatment was 21.3 days (SD 7.9). There were no statistical differences regarding therapeutic failure between oral quinolones and IV ß-lactam treatment (6.6% vs. 8.7%, p = 0.6). Out of the 66 patients treated with intravenous antibiotics, 4 (6.1%) experienced an episode of phlebitis and 1 patient (1.5%) an episode of catheter-related bacteraemia. CONCLUSIONS: When susceptible, treatment of AFBN with oral quinolones is as effective as IV ß-lactam treatment with fewer adverse events.


Subject(s)
Administration, Intravenous , Anti-Bacterial Agents , Quinolones , beta-Lactams , Humans , Retrospective Studies , Male , Female , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Administration, Oral , Middle Aged , beta-Lactams/administration & dosage , beta-Lactams/therapeutic use , Quinolones/administration & dosage , Quinolones/therapeutic use , Aged , Adult , Spain , Treatment Outcome , Acute Disease , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
12.
Rev Esp Quimioter ; 37(4): 299-322, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38840420

ABSTRACT

Antimicrobial agents are widely used, and drug interactions are challenging due to increased risk of adverse effects or reduced efficacy. Among the interactions, the most important are those affecting metabolism, although those involving drug transporters are becoming increasingly known. To make clinical decisions, it is key to know the intensity of the interaction, as well as its duration and time-dependent recovery after discontinuation of the causative agents. It is not only important to be aware of all patient treatments, but also of supplements and natural medications that may also interact. Although they can have serious consequences, most interactions can be adequately managed with a good understanding of them. Especially in patients with polipharmacy it is compulsory to check them with an electronic clinical decision support database. This article aims to conduct a narrative review focusing on the major clinically significant pharmacokinetic drug-drug interactions that can be seen in patients receiving treatment for bacterial infections.


Subject(s)
Anti-Bacterial Agents , Drug Interactions , Humans , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Bacterial Infections/drug therapy
13.
Iran J Microbiol ; 16(2): 193-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38854977

ABSTRACT

Background and Objectives: Antibiotic resistance within the poultry sector presents a considerable health concern due to treatment inefficacy and resistance transmission to humans and the environment. The investigation of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli, acknowledged for its role in advancing resistance, remains inadequately studied in Iranian poultry. This study aimed to evaluate PMQR gene prevalence as well as to determine correlation between resistance phenotype and genotype in E. coli obtained from poultry colibacillosis. Materials and Methods: A collection of 100 E. coli isolates from the viscera of broilers suspected to colibacillosis was assessed. Using the Kirby-Bauer disk diffusion method, antimicrobial susceptibility tests were conducted for ofloxacin, nalidixic acid, levofloxacin, ciprofloxacin, and ampicillin. Additionally, PCR was employed to screen for qnrS, qnrB, and aac(6)Ib-cr genes. Results: Among the analyzed E. coli isolates, 51% demonstrated resistance to at least one of the tested antibiotics, with 17% exhibiting resistance to four different antibiotics. Nalidixic acid displayed the highest resistance rate at 48%, while ampicillin had the lowest at 16%. PMQR genes were detected in 28% of the E. coli isolates, with aac(6')-Ib-cr being the most prevalent at 14%, followed by qnrB in 13%, and qnrS in 7%. Conclusion: The study underscores the vital need for careful antibiotic usage in poultry to curb the emergence of antibiotic-resistant bacteria. The results illuminate the prevalence of PMQR genes and their association with resistance trends in Iranian poultry, forming a pivotal basis for forthcoming approaches to combat antibiotic resistance within the poultry sector.

14.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893542

ABSTRACT

In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.

15.
Food Chem ; 454: 139796, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797102

ABSTRACT

This study aimed to present a selective and effective method for analyzing quinolones (QNs) in food matrix. Herein, a NiFe2O4-based magnetic sodium disulfonate covalent organic framework (NiFe2O4/COF) was prepared using a simple solvent-free grinding method, and was adopted as a selective adsorbent for magnetic solid phase extraction of QNs. Coupled with UHPLC-Q-Orbitrap HRMS, an efficient method for simultaneous detection of 18 kinds of QNs was established. The method exhibited good linearity (0.01-100 ng g-1), high sensitivity (LODs ranging from 0.0011 to 0.0652 ng g-1) and precision (RSDs below 9.5%). Successful extraction of QNs from liver and kidney samples was achieved with satisfactory recoveries ranging from 82.2% to 108.4%. The abundant sulfonate functional groups on NiFe2O4/COF facilitated strong affinity to QNs through electrostatic and hydrogen bonding interactions. The proposed method provides a new idea for the extraction of contaminants with target selectivity.


Subject(s)
Ferric Compounds , Food Contamination , Metal-Organic Frameworks , Quinolones , Solid Phase Extraction , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Quinolones/analysis , Quinolones/isolation & purification , Quinolones/chemistry , Chromatography, High Pressure Liquid , Food Contamination/analysis , Animals , Metal-Organic Frameworks/chemistry , Ferric Compounds/chemistry , Nickel/chemistry , Nickel/analysis , Nickel/isolation & purification , Mass Spectrometry , Adsorption , Liver/chemistry
16.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792155

ABSTRACT

With the rising incidence of various diseases in China and the constant development of the pharmaceutical industry, there is a growing demand for floxacin-type antibiotics. Due to the large-scale production and high cost of waste treatment, the parent drug and its metabolites constantly enter the water environment through domestic sewage, production wastewater, and other pathways. In recent years, the pollution of the aquatic environment by floxacin has become increasingly serious, making the technology to degrade floxacin in the aquatic environment a research hotspot in the field of environmental science. Metal-organic frameworks (MOFs), as a new type of porous material, have attracted much attention in recent years. In this paper, four photocatalytic materials, MIL-53(Fe), NH2-MIL-53(Fe), MIL-100(Fe), and g-C3N4, were synthesised and applied to the study of the removal of ofloxacin and enrofloxacin. Among them, the MIL-100(Fe) material exhibited the best photocatalytic effect. The degradation efficiency of ofloxacin reached 95.1% after 3 h under visible light, while enrofloxacin was basically completely degraded. The effects of different materials on the visible photocatalytic degradation of the floxacin were investigated. Furthermore, the photocatalytic mechanism of enrofloxacin and ofloxacin was revealed by the use of three trappers (▪O2-, h+, and ▪OH), demonstrating that the role of ▪O2- promoted the degradation effect of the materials under photocatalysis.


Subject(s)
Metal-Organic Frameworks , Quinolones , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Catalysis , Quinolones/chemistry , Water Pollutants, Chemical/chemistry , Photolysis , Light , Ofloxacin/chemistry , Photochemical Processes , Anti-Bacterial Agents/chemistry , Enrofloxacin/chemistry
17.
Acta Parasitol ; 69(2): 1275-1283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753101

ABSTRACT

PURPOSE: Toxoplasmosis is caused by the parasite Toxoplasma gondii (T. gondii). In immunocompetent individuals, the infection is often asymptomatic; however, in expectant mothers and those with immune system deficiencies, complications may arise. Consequently, there is a need for new drugs that cause minimal damage to host cells. The purpose of this study was to investigate the in vitro antiparasitic efficacy of quinolone-coumarin hybrids QC1-QC12, derived from quinolone antibacterials and novobiocin, against T. gondii. METHODS: The derivatives were compared with novobiocin and ciprofloxacin during testing, with pyrimethamine used as a positive control. We conducted the MTT assay to examine the anti-toxoplasmic effects of the test compounds and novobiocin. Evaluation included the infection and proliferation indices, as well as the size and number of plaques, based on the viability of both healthy and infected cells. RESULTS: The in vitro assays revealed that QC1, QC3, QC6, and novobiocin, with selectivity indices (SIs) of 7.27, 13.43, and 8.23, respectively, had the least toxic effect on healthy cells and the highest effect on infected cells compared to pyrimethamine (SI = 3.05). Compared to pyrimethamine, QC1, QC3, QC6, and novobiocin Without having a significant effect on cell viability, demonstrated a significant effect on reducing in both infection index and proliferation index, in addition to reducing the quantity and dimensions of plaques ( P < 0.05). CONCLUSION: Based on our results, QC1, QC3, QC6, and novobiocin due to their significant therapeutic effects could be considered as potential new leads in the development of novel anti-Toxoplasma agents.


Subject(s)
Novobiocin , Quinolones , Toxoplasma , Toxoplasma/drug effects , Novobiocin/pharmacology , Animals , Quinolones/pharmacology , Quinolones/chemistry , Fluoroquinolones/pharmacology , Coumarins/pharmacology , Coumarins/chemistry , Antiprotozoal Agents/pharmacology , Humans , Cell Survival/drug effects , Parasitic Sensitivity Tests
18.
J Infect Chemother ; 30(10): 1028-1034, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38580055

ABSTRACT

INTRODUCTION: Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS: The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT: WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION: WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Campylobacter jejuni , DNA Gyrase , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Quinolones , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/enzymology , DNA Gyrase/genetics , DNA Gyrase/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Structure-Activity Relationship , Molecular Docking Simulation , Humans , Campylobacter Infections/microbiology , Campylobacter Infections/drug therapy
19.
ACS Infect Dis ; 10(4): 1405-1413, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38563132

ABSTRACT

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Subject(s)
Babesiosis , Quinolones , Mice , Humans , Animals , Babesiosis/drug therapy , Babesiosis/parasitology , Quinolones/pharmacology , Atovaquone/pharmacology , Atovaquone/therapeutic use
20.
EClinicalMedicine ; 71: 102589, 2024 May.
Article in English | MEDLINE | ID: mdl-38596615

ABSTRACT

Background: The escalating resistance of Mycoplasma pneumoniae to macrolides has become a significant global health concern, particularly in low-income and middle-income countries (LMICs). Although tetracyclines and quinolones have been proposed as alternative therapeutic options, concerns regarding age-specific safety issues and the lack of consensus in recommendations across various national guidelines prevail. Thus, the primary objective of this study is to ascertain the most efficacious interventions for second-line treatment of M. pneumoniae infection while considering the age-specific safety issues associated with these interventions. Methods: In this systematic review and network meta-analysis we searched PubMed, Embase, CNKI, and WanFang Data, from inception up to November 11th, 2023. Studies of quinolones or tetracyclines for the treatment of people with M. pneumoniae infection were collected and screened by reading published reports, with any type of study included, and no individual patient-level data requested. A systematic review and direct meta-analysis compared the efficacy of tetracyclines and quinolones regarding time to defervescence (TTD) and the rates of fever disappearance within 24 h and 48 h of antibiotic administration, for managing M. pneumoniae infection. Bayesian network meta-analysis (NMA) was employed to indirectly assess the relative effectiveness of different interventions in people with M. pneumoniae infection and the safety profile of medication in paediatric patients. This study is registered with PROSPERO, CRD42023478383. Findings: The systematic review and direct meta-analysis included a total of 4 articles involving 246 patients, while the NMA encompassed 85 articles involving a substantial cohort of 7095 patients. The NMA measured the effectiveness across all ages and included 7043 patients, with a mean age of 37.80 ± 3.91 years. Of the 85 included studies, 14 (16.5%) were at low risk of bias, 71 (83.5%) were at moderate risk, and no studies were rated as having a high risk of bias. In the direct meta-analysis, no statistically significant differences were found between tetracyclines and quinolones concerning TTD (mean difference: -0.40, 95% CI: -1.43 to 0.63; I2 = 0%), fever disappearance rate within 24 h of antibiotic administration (OR: 0.37, 95% CI: 0.08-1.79; I2 = 58%), and fever disappearance rate within 48 h of antibiotic administration (OR: 1.10, 95% CI: 0.30-3.98; I2 = 59%). However, the comprehensive NMA analysis of clinical response (in 70 studies; n = 6143 patients), shortening of TTD (in 52 studies; n = 4363 patients), shortening length of cough relief or disappearance (in 39 studies; n = 3235 patients), fever disappearance rate at 48 h (in four studies; n = 418 patients) revealed that minocycline exhibited the most favourable outcomes across these various parameters, and the analysis of fever disappearance rate at 24 h (in three studies; n = 145 patients) revealed that levofloxacin may be the most effective, as indicated by the rank probabilities and surface under the cumulative ranking area (SUCRA) value. Moxifloxacin ranked second in clinical response and in shortening the length of cough relief or disappearance, and third in shortening TTD. Notably, when evaluating the occurrence of adverse reactions in paediatric patients (in four studies; n = 239 children), levofloxacin was associated with the highest SUCRA value rankings for the rate of adverse events. Interpretation: Our findings suggest that tetracyclines and quinolones may be equally effective. Based on the age of participants in the included studies, minocycline may be the most effective intervention for children over eight years of age when all preventive measures are considered, whereas moxifloxacin may benefit people under eight years of age. However, these results should be interpreted with caution, given the limited number of studies and patients included, and the heterogeneity between included studies. Based on a limited number of studies in children, levofloxacin is likely to have one of the highest rates of adverse reactions. The majority of the studies included in the NMA were from the Asian region, and more randomised controlled trials comparing different therapeutic strategies in patients with M. pneumoniae are warranted. This comparative study provides clinical pharmacists and clinicians with important information to enable them to make informed decisions about treatment options, considering drug efficacy and safety. Funding: The Natural Science Foundation of Fujian Province, China.

SELECTION OF CITATIONS
SEARCH DETAIL