Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.480
Filter
1.
Int Immunopharmacol ; 141: 112952, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151384

ABSTRACT

Linoleic acid (LA) is an omega-6 polyunsaturated fatty acid. Conjugated linoleic acid (CLA) is a family of LA isomers that includes both a trans fatty acid and a cis fatty acid. Both fatty acids play a nutritional role in maintaining health. Inflammation is critical in the pathogenesis of many diseases, including cancer. This study found that the combination of LA and CLA (LA/CLA), each of which had no effect, had a strong anti-synergistic effect on inflammatory macrophage RAW264.7 cells in vitro. Cells were cultured in a DMEM containing fetal bovine serum with or without either LA, CLA, or a combination of LA/CLA. The composition of LA and CLA at a comparatively lower concentration synergistically suppressed cell growth, resulting in a reduction in cell number. The underlying mechanism of this effect was based on reduced levels of Ras, PI3K, Akt, MAPK, and mTOR and elevated levels of p21, p53, and Rb, which are associated with cell growth. In addition, the combination of LA and CLA at a lower concentration stimulated potential cell death associated with increased caspase-3 and cleaved caspase-3 levels. Notably, this composition synergistically suppressed the production of TNF-α, IL-6, and PGE2, which are a major mediator of inflammation, with lipopolysaccharide stimulation in RAW264.7 cells This effect was associated with decreased levels of COX-1, COX-2, and NF-κB p65. This study may provide a useful tool for treating inflammatory conditions with the composition of LA and CLA.

2.
Front Pharmacol ; 15: 1413876, 2024.
Article in English | MEDLINE | ID: mdl-39148539

ABSTRACT

Background: Excessive inflammation poses significant risks to human physical and mental health. Astilbe grandis, a traditional Miao medicine, is renowned for its anti-inflammatory properties. However, the specific anti-inflammatory effects and mechanisms of many compounds within this plant remain unclear. This study aims to investigate the anti-inflammatory effects and mechanisms of two characteristic oleanane triterpenoids, 3α-acetoxyolean-12-en-27-oic acid (1) and 3ß-acetoxyolean-12-en-27-oic acid (2), isolated from Astilbe grandis, using lipopolysaccharide (LPS)-induced Macrophages. Methods: The anti-inflammatory effects and mechanisms of compounds 1 and 2 were investigated by establishing an LPS-induced inflammation model in RAW 264.7 cells and THP-1 cells. Nitric oxide (NO) levels were assessed using the Griess method. The concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1ß) were measured via enzyme-linked immunosorbent assay (ELISA). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was determined using western blotting and quantitative real-time PCR (qRT-PCR). Additionally, the phosphorylation level of p65 in nuclear factor-kappa B (NF-κB) was assessed through western blotting. The nuclear translocation of NF-κB p65 was assessed through immunofluorescence staining. Finally, the binding affinity of the compounds to NF-κB p65 target was validated through molecular docking. Results: Compounds 1 and 2 significantly inhibited the expression of NO, TNF-α, IL-6, IL-1ß, COX-2, and iNOS in LPS-induced Macrophages. Mechanistically, they attenuated the activation of the NF-κB signaling pathway by downregulating the phosphorylation level and nuclear translocation of p65. Conclusion: This study elucidates the anti-inflammatory activities and potential mechanism of the characteristic oleanane triterpenoids with C-14 carboxyl group, compounds 1 and 2, in LPS-induced Macrophages by inhibiting the NF-κB signaling pathway for the first time. These findings suggest that these two compounds hold promise as potential candidates for anti-inflammatory interventions in the future.

3.
Int Immunopharmacol ; 140: 112854, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116494

ABSTRACT

The inflammation causes the destroyed osseointegration at the implant-bone interface, significantly increasing the probability of implant loosening in osteoporotic patients. Currently, inhibiting the differentiation of M1 macrophages and the inflammatory response could be a solution to stabilize the microenvironment of implants. Interestingly, some natural products have anti-inflammatory and anti-polarization effects, which could be a promising candidate for stabilizing the implants' microenvironment in osteoporotic patients. This research aims to explore the inhibitory effect of Urolithin B(UB) on macrophage M1 polarization, which ameliorates inflammation, thus alleviating implant instability. We established an osteoporosis mouse model of implant loosening. The mouse tissues were taken out for morphological analysis, staining analysis, and bone metabolic index analysis. In in vitro experiments, RAW264.7 cells were polarized to M1 macrophages using lipopolysaccharide (LPS) and analyzed by immunofluorescence (IF) staining, Western blot (WB), and flow cytometry. The CSP100 plus chip experiments were used to explore the potential mechanisms behind the inhibiting effects of UB. Through observation of these experiments, UB can improve the osseointegration between the implants and femurs in osteoporotic mice and enhance the stability of implants. The UB can inhibit the differentiation of M1 macrophages and local inflammation via inhibiting the phosphorylation of VEGFR2, which can be further proved by the weakened inhibited effects of UB in macrophages with lentivirus-induced overexpression of VEGFR2. Overall, UB can specifically inhibit the activation of VEGFR2, alleviate local inflammation, and improve the stability of implants in osteoporotic mice.

4.
J Recept Signal Transduct Res ; : 1-9, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175331

ABSTRACT

Inflammation triggers various types of diseases that need to be addressed. Macrophages play important roles in the inflammatory responses. As atherosclerosis progresses, macrophages transform into foam cells. Extracellular acidification is observed at and around bacterial infection and atherosclerotic sites. However, the effects of acidification on the inflammatory response of macrophages and the progression of atherosclerosis have not been fully understood. This study investigates the impact of extracellular acidification on lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) expression and macropinocytotic activity in RAW264.7 cells. TNF-α expression is measured by real-time polymerase chain reaction (relative value to glyceraldehyde-3-phosphate dehydrogenase expression). Macropinocytotic activity is measured by neutral red uptake (absorbance at 540 nm). Results show that TNF-α expression increased with decreasing extracellular pH in both un-foamed and foamed cells. Macropinocytotic activity was upregulated at pH 6.8 in un-foamed cells, but downregulated in foamed cells stimulated at low pH. Proton-sensing G protein-coupled receptors (GPCRs) were involved in the expression of TNF-α and in the macropinocytotic activity of foamed cells. In conclusion, this study reveals that extracellular acidification differently affect various inflammatory responses such as LPS-induced TNF-α expression and macropinocytotic activity of RAW264.7 cells and different proton-sensing GPCRs are involved in the different inflammatory responses.

5.
BMC Complement Med Ther ; 24(1): 260, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987758

ABSTRACT

BACKGROUND: The Pro-inflammatory mediators such as prostaglandin E2, nitric oxide and TNF-α are the key players in the stimulation of the inflammatory responses. Thus, the pro-inflammatory mediators are considered to be potential targets for screening nutraceutical with anti-inflammatory activity. METHODS: In this context, we explored the anti-inflammatory potency of seagrass extract with western blot (Bio-Rad) analysis by using LPS induced RAW macrophages as in-vitro models, western blot analysis, In-silico methods using Mastero 13.0 software. RESULTS: The anti-inflammatory activity of Seagrass was demonstrated through down regulation of Pro-inflammatory markers such as Cyclooxygenase-2, induced Nitric oxide synthase and prostaglandin E synthase-1. The results were validated by docking the phytochemical constituents of seagrass namely Isocoumarin, Hexadecanoic acid, and Cis-9 Octadecenoic acid, 1,2 Benzene dicarboxylic acid and beta-sitosterol with TNF-alpha, COX-2, iNOS and PGES-1. CONCLUSION: The methanolic extract of seagrass Halophila beccarii is a potential nutraceutical agent for combating against inflammation with a significant anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents , Dietary Supplements , Plant Extracts , Mice , Anti-Inflammatory Agents/pharmacology , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , RAW 264.7 Cells , Biomarkers , Alismatales/chemistry , Inflammation/drug therapy , Cyclooxygenase 2/metabolism
6.
Heliyon ; 10(12): e32645, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988579

ABSTRACT

In the present study, we investigated whether baicalin could reduce the damage caused to RAW264.7 cells following infection with H6N6 avian influenza virus. In addition, we studied the expression of autophagy-related genes. The morphological changes in cells were observed by hematoxylin and eosin (H&E) staining, and the inflammatory factors in the cell supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to detect the levels of RAW264.7 autophagosomes, and western blotting and immunofluorescence were used to detect the protein expression of autophagy marker LC3. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the mRNA transcription levels of autophagy key factors. The results showed that different doses of baicalin significantly reduced the H6N6 virus-induced damage of RAW264.7 cells. The contents of interleukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the cell supernatant significantly decreased. In addition, the protein expression of LC3 and Beclin-1, ATG12, ATG5 the mRNA levels were significantly decreased. This study showed that baicalin can reduce cell damage and affect the H6N6-induced autophagy level of RAW264.7 cells.

7.
Antioxidants (Basel) ; 13(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39061822

ABSTRACT

This work focuses on Cistus monspeliensis L. aerial parts (AP) and roots (R) extracts, investigating the anti-inflammatory and antioxidant potential of the two organs in comparison. At dosages between 1.56 and 6.25 µg/mL, both extracts showed a protective effect against LPS inflammatory stimulus on a macrophage cell line (RAW 264.7). Interestingly, only R was able to significantly reduce both IL-1ß and IL-6 mRNA gene expression in the presence of LPS. Moreover, the treatment of a neuroblastoma cell line (SH-SY5Y) with AP and R at 6.25 µg/mL increased the cell survival rate by nearly 20% after H2O2 insult. However, only R promoted mitochondria survival, exhibited a significantly higher production of ATP and a higher activity of the enzyme catalase than the control. Both AP and R had similar primary metabolites; in particular, they both contained 1-O-methyl-epi-inositol. Labdane and methoxylated flavonoids were the most characteristic compounds of AP, while R contained mainly catechins, gallic acid, and pyrogallol derivatives. Considering the importance of elemental composition in plants, the inorganic profile of AP and R was also investigated and compared. No potentially toxic elements, such as Pb, were detected in any sample.

8.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062960

ABSTRACT

Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule capable of recognising HPV16 pseudovirions (HPV16-PsVs) and reducing infection in a murine cervicovaginal HPV challenge model. Building on these findings, our current study aimed to assess SP-A's suitability as a broad-spectrum HPV-targeting molecule and its impact on innate immune responses. We demonstrate SP-A's ability to agglutinate and opsonise multiple oncogenic HPV-PsVs types, enhancing their uptake and clearance by RAW264.7 murine macrophages and THP-1 human-derived immune cells. The SP-A opsonisation of HPV not only led to increased lysosomal accumulation in macrophages and HaCaT keratinocytes but also resulted in a decreased infection of HaCaT cells, which was further decreased when co-cultured with innate immune cells. An analysis of human innate immune cell cytokine profiles revealed a significant inflammatory response upon SP-A exposure, potentially contributing to the overall inhibition of HPV infection. These results highlight the multi-layered impact of SP-A on HPV, innate immune cells and keratinocytes and lay the basis for the development of alternative prophylactic interventions against diverse HPV types.


Subject(s)
Macrophages , Papillomavirus Infections , Pulmonary Surfactant-Associated Protein A , Humans , Animals , Mice , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/immunology , RAW 264.7 Cells , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , Keratinocytes/metabolism , Keratinocytes/virology , Keratinocytes/immunology , Cytokines/metabolism , HaCaT Cells , THP-1 Cells , Female
9.
Int Immunopharmacol ; 138: 112651, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38986303

ABSTRACT

Peripheral blood mononuclear cells (PBMC), sourced autologously, offer numerous advantages when procured: easier acquisition process, no in vitro amplification needed, decreased intervention and overall increased acceptability make PBMC an attractive candidate for cell therapy treatment. However, the exact mechanism by which PBMC treat diseases remains poorly understood. Immune imbalance is the pathological basis of many diseases, with macrophages playing a crucial role in this process. However, research on the role and mechanisms of PBMC in regulating macrophages remains scarce. This study employed an in vitro co-culture model of PBMC and RAW264.7 macrophages to explore the role and mechanisms of PBMC in regulating macrophages. The results showed that the co-culturing led to decreased expression of inflammatory cytokines and increased expression of anti-inflammatory cytokines in RAW264.7 or in the culture supernatant. Additionally, the pro-inflammatory, tissue matrix-degrading M1 macrophages decreased, while the anti-inflammatory, matrix-synthesizing, regenerative M2 macrophages increased in both RAW264.7 and monocytes within PBMC. Moreover, co-cultured macrophages exhibited a significantly decreased p-STAT1/STAT1 ratio, while the p-STAT6/STAT6 ratio significantly increased. This suggests that PBMC may inhibit M1 macrophage polarization by blocking STAT1 signaling cascades and may promote M2 macrophage polarization through the activation of STAT6 signaling cascades. Overall, this study sheds light on the role and mechanism of PBMC in regulating macrophages. Moreover, it was found that monocytes within co-cultured PBMC differentiated into M2 macrophages in the presence of macrophages. This finding provides experimental evidence for the use of PBMC in treating inflammatory diseases, especially macrophage-depleting inflammatory diseases such as osteoarthritis.


Subject(s)
Coculture Techniques , Leukocytes, Mononuclear , Macrophages , STAT1 Transcription Factor , STAT6 Transcription Factor , Signal Transduction , Animals , Mice , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , RAW 264.7 Cells , STAT1 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism
10.
Front Immunol ; 15: 1381802, 2024.
Article in English | MEDLINE | ID: mdl-38966637

ABSTRACT

Background: Yishen-Tongbi Decoction (YSTB), a traditional Chinese prescription, has been used to improve syndromes of rheumatoid arthritis (RA) for many years. Previous research has shown that YSTB has anti-inflammatory and analgesic properties. However, the underlying molecular mechanism of the anti-RA effects of YSTB remains unclear. Purpose and study design: The purpose of this research was to investigate how YSTB affected mice with collagen-induced arthritis (CIA) and RAW264.7 cells induced with lipopolysaccharide (LPS). Results: The findings show that YSTB could significantly improve the clinical arthritic symptoms of CIA mice (mitigate paw swelling, arthritis score, thymus and spleen indices, augment body weight), downregulated expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-17, while upregulated the level of anti-inflammatory like IL-10 and transforming growth factor-ß (TGF-ß). Meanwhile, YSTB inhibits bone erosion and reduces inflammatory cell infiltration, synovial proliferation, and joint destruction in CIA mice. In addition, we found that YSTB was able to suppress the LPS-induced inflammation of RAW264.7 cells, which was ascribed to the suppression of nitric oxide (NO) production and reactive oxygen species formation (ROS). YSTB also inhibited the production of inducible nitric oxide synthase and reduced the releases of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. Furthermore, the phosphorylation expression of JAK2, JAK3, STAT3, p38, ERK and p65 protein could be suppressed by YSTB, while the expression of SOCS3 could be activated. Conclusion: Taken together, YSTB possesses anti-inflammatory and prevention bone destruction effects in RA disease by regulating the JAK/STAT3/SOCS3 signaling pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Janus Kinases , STAT3 Transcription Factor , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , RAW 264.7 Cells , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Signal Transduction/drug effects , Janus Kinases/metabolism , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Mice, Inbred DBA , Disease Models, Animal
11.
Nutrients ; 16(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999828

ABSTRACT

This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin, which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.


Subject(s)
Anti-Inflammatory Agents , Docosahexaenoic Acids , Drug Synergism , Flavones , Lipopolysaccharides , Macrophages , Nitric Oxide , Animals , Mice , Flavones/pharmacology , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Docosahexaenoic Acids/pharmacology , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , Phosphorylation/drug effects , Phagocytosis/drug effects , Cytokines/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Mar Drugs ; 22(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39057434

ABSTRACT

Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.


Subject(s)
Antioxidants , Hydrogen Peroxide , Oxidative Stress , Polydeoxyribonucleotides , Proteomics , Spermatozoa , Animals , Mice , Hydrogen Peroxide/toxicity , Proteomics/methods , Male , Antioxidants/pharmacology , Antioxidants/isolation & purification , Oxidative Stress/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , RAW 264.7 Cells , Polydeoxyribonucleotides/pharmacology , Stichopus/chemistry , Sea Cucumbers/chemistry , Protective Agents/pharmacology
13.
Macromol Rapid Commun ; : e2400400, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981020

ABSTRACT

With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.

14.
Carbohydr Res ; 542: 109200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964015

ABSTRACT

The polymeric nanoparticles (PNPs) loaded with prednisolone were developed to exhibit pH-responsive properties owing to the attachment of a hydrazone linkage between the copolymer chitosan and mPEG. In the diseased cellular environment, the hydrazone bond tends to break due to reduced pH, leading to the release of the drug from the PNPs at the required site of action. The fabricated PNPs exhibit spherical morphology, optimum size (∼200 nm), negative surface charge, and monodispersed particle size distribution. The encapsulation efficiency of the PNPs was determined to be 71.1 ± 0.79 % and two experiments (polymer weight loss and drug release) confirmed the pH-responsive properties of the PNPs. The cellular study cytotoxicity assay showed biocompatibility of PNPs and drug molecule-mediated toxicity to A549 cells. The ligand atrial natriuretic peptide-attached PNPs internalized into A549 cells via natriuretic peptide receptor-A to achieve target specificity. The PNPs cytotoxicity and pH-response medicated inflammation reduction functionality was studied in inflammation-induced RAW264.7 cell lines. The study observed the PNPs effectively reduced the inflammatory mediators NO and ROS levels in RAW264.7. The results showed that pH-responsive properties of PNPs and this novel fabricated delivery system effectively treat inflammatory and cancer diseases.


Subject(s)
Chitosan , Click Chemistry , Nanoparticles , Chitosan/chemistry , Chitosan/pharmacology , Hydrogen-Ion Concentration , Humans , Mice , Animals , Nanoparticles/chemistry , RAW 264.7 Cells , A549 Cells , Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems , Particle Size , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Drug Liberation , Prednisolone/chemistry , Prednisolone/pharmacology , Cell Survival/drug effects
15.
Food Chem ; 460(Pt 1): 140414, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39084103

ABSTRACT

Opuntia plants are abundant but still underexplored edible resources of the Algerian region. This work chemically characterizes extracts of different parts of the fruit of the commercial Opuntia ficus-indica (L.) Mill. and the wild Opuntia stricta (Haw.) Haw. growing in Bejaia, and evaluates their anti-inflammatory potential through different cell and cell-free bioassays. The LC-ESI-UHR-QqTOF-MS/MS analysis enabled the identification of 18 compounds, with azelaic acid and 1-O-vanilloyl-ß-d-glucose reported here for the first time. Aqueous extracts of seeds were the most effective in scavenging superoxide anion radical (IC50 = 111.08 µg/mL) and presented the best anti-inflammatory potential in LPS-stimulated macrophages (IC50 = 206.30 µg/mL). The pulp of O. stricta suggested potential for addressing post-inflammatory hyperpigmentation, with piscidic and eucomic acids predicted with the strongest binding affinity towards tyrosinase, exhibiting higher scoring values than the reference inhibitor kojic acid. This pioneer study brings valuable perspectives for the pharmacological, nutritional and economic valorization of the wild O. stricta for functional foods.

16.
Prev Nutr Food Sci ; 29(2): 146-153, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38974596

ABSTRACT

This study aimed to evaluate the antioxidant and anti-inflammatory activities of Lonicera caerulea L. ethanol extract (LCEE) and water extract (LCWE) in vitro. We primarily evaluated the improvement effect of LCWE and LCEE on hydrogen peroxide (H2O2)-induced oxidative damage and lipopolysaccharide (LPS)-induced inflammatory damage in RAW 264.7 cells by detecting oxidation-related indicators and inflammatory factors, respectively. Cellular studies showed that LCWE and LCEE increased superoxide dismutase and catalase antioxidant enzyme levels and decreased malondialdehyde and nitric oxide peroxide levels in H2O2-induced RAW 264.7 cells. Moreover, LCWE and LCEE decreased the secretion of inflammatory factors [e.g., interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α] in LPS-induced RAW 264.7 cells. In conclusion, LCWE and LCEE demonstrated excellent antioxidant and anti-inflammatory effects in vitro. However, LCWE was superior to LCEE, which may be related to its chemical composition and requires further research.

17.
Int Immunopharmacol ; 137: 112443, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897124

ABSTRACT

Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.


Subject(s)
Brucella suis , Brucellosis , Macrophages , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Toll-Like Receptor 4 , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Brucellosis/immunology , Brucellosis/microbiology , Brucellosis/genetics , RAW 264.7 Cells , Brucella suis/immunology , Brucella suis/genetics , Brucella suis/pathogenicity , Virulence/genetics , Macrophages/immunology , Gene Deletion , Signal Transduction/immunology , Female , Mice, Inbred BALB C , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Spleen/immunology , Inflammation/immunology
18.
Life (Basel) ; 14(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929746

ABSTRACT

The concept of a "circular bioeconomy" holds great promise for the health, cosmetic, and nutrition sectors by re-using Castanea sativa (Mill.) by-products. This sustainable resource is rich in bioactive secondary metabolites with antioxidant and anti-inflammatory properties. By transforming these by-products into high-value products for human health, we can promote sustainable economic growth and reduce the environmental impact of traditional waste disposal, adding value to previously underutilized resources. In the present study, we investigated the antioxidant capacity, phytochemical composition, and in vitro antioxidant and anti-inflammatory activity of C. sativa burr (CSB) aqueous extract. The spectrophotometric study revealed high total phenolic content (TPC) values with significant antioxidant and anti-radical properties. Using UPLC-MS/MS techniques, the phytochemical investigation identified 56 metabolites, confirming the presence of phenolic compounds in CSBs. In addition, CSBs significantly downregulated pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophage cells without significant cell toxicity. Lastly, in silico studies pinpointed three kinases from RAW 264.7 cells as binding partners with ellagic acid, the predominant compound found in our extract. These findings strongly advocate for the recycling and valorization of C. sativa by-products, challenging their conventional classification as mere "waste".

19.
J Pers Med ; 14(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38929840

ABSTRACT

This study compared the therapeutic effects of engineered exosomes derived from RAW264.7 cells overexpressing hsa-let-7i-5p (engineered exosomes) to exosomes from human placenta-derived mesenchymal stem cells (hpMSC exosomes) against sepsis-induced acute lung injury. Adult male C57BL/6 mice were divided into lipopolysaccharide (LPS), LPS plus engineered exosome (LEExo), or LPS plus hpMSC exosome (LMExo) groups, alongside control groups. The results showed that lung injury scores (based on pathohistological characteristics) and the levels of lung function alterations, tissue edema, and leukocyte infiltration in LEExo and LMExo groups were comparable and significantly lower than in the LPS group (all p < 0.05). Furthermore, the levels of inflammation (nuclear factor-κB activation, cytokine upregulation), macrophage activation (hypoxia-inducible factor-1α activation, M1 phase polarization), oxidation, and apoptosis were diminished in LEExo and LMExo groups compared to the LPS group (all p < 0.05). Inhibition of hsa-let-7i-5p attenuated the therapeutic effects of both engineered and hpMSC exosomes. These findings underscore the potent therapeutic capacity of engineered exosomes enriched with hsa-let-7i-5p and their potential as an alternative to hpMSC exosomes for sepsis treatment. Continued research into the mechanisms of action and optimization of engineered exosomes could pave the way for their future clinical application.

20.
Mol Biol Rep ; 51(1): 774, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904794

ABSTRACT

BACKGROUND: Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS: The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS: Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.


Subject(s)
Anti-Inflammatory Agents , Fruit , Lipopolysaccharides , NF-kappa B , Nitric Oxide , Olea , Plant Extracts , Reactive Oxygen Species , Signal Transduction , Animals , Olea/chemistry , Mice , RAW 264.7 Cells , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Fruit/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , MAP Kinase Signaling System/drug effects , Interleukin-6/metabolism , Interleukin-6/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Cell Survival/drug effects , Mitogen-Activated Protein Kinases/metabolism , Macrophages/drug effects , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL