Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Int Immunopharmacol ; 140: 112908, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39133960

ABSTRACT

The interplay between immune checkpoints KLRB1 and CLEC2D is crucial for tumor progression and immune evasion, yet the interaction dynamics are not fully understood. This study aims to elucidate the interaction across various cancers and identify small molecule inhibitors that can disrupt it. We perform a comprehensive pan-cancer analysis of the KLRB1-CLEC2D pair, including mRNA expression patterns, pathological stages, survival outcomes, and single-cell omics, immune infiltration, copy number variations, and DNA methylation profiles. Our findings reveal a consistently higher CLEC2D/KLRB1 ratio in most cancer types compared to normal tissues, and this ratio also increased with advancing pathological stages. Lower KLRB1 expression correlated with higher mortality in most cancers, opposite to CLEC2D. Expression variations were attributed to differential lymphocyte infiltration, CNV, and DNA methylation. Structure-based virtual screening analysis identified compounds including forsythiaside A and RGD peptides as effective inhibitors of the KLRB1-CLEC2D interaction, validated through microscale thermophoresis. This research advances understanding of the KLRB1-CLEC2D interaction within the tumor microenvironment and introduces novel therapeutic strategies to modulate this interaction.

2.
Macromol Biosci ; : e2400190, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116430

ABSTRACT

Cell-laden hydrogels have been extensively investigated in various tissue engineering fields by their potential capacity to deposit numerous types of cells in a specific area. They are largely used in soft-tissue engineering applications because of their low mechanical strength. In addition, sodium alginate is well-known for its encapsulation, loading capacity and for being easily controllable; however, it lacks cell-binding ligands and hence the ability to adhere cells. In this study, it is aimed to enhance osteogenesis in cells encapsulated in alginate and improve its mechanical properties by introducing a synthetic peptide and calcium phosphate phase transition. To increase cell-hydrogel interactions and increasing cell viability, an RGD peptide is added to a photocrosslinkable methacrylate-modified alginate, and alpha-tricalcium phosphate (α-TCP) is added to the hydrogel to increase its mechanical strength via phase transition. Cell proliferation, growth, and differentiation are assessed in both 2D and 3D cell cultures. The addition of α-TCP significantly improved the mechanical properties of the hydrogel. Moreover, the RGD peptide and α-TCP showed a synergistic effect with significantly improved cell adhesion and osteogenesis in both 2D and 3D cell cultures. Therefore, the functional hydrogel developed in this study can potentially be used for bone tissue regeneration.

3.
Int J Pharm ; 662: 124480, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038719

ABSTRACT

Adenovirus (Ad) vectors based on human adenovirus serotype 5 (Ad5) have attracted significant attention as vaccine vectors for infectious diseases. However, the effectiveness of Ad5 vectors as vaccines is often inhibited by the anti-Ad5 neutralizing antibodies retained by many adults. To overcome this drawback, we focused on human adenovirus serotype 35 (Ad35) vectors with low seroprevalence in adults. Although Ad35 vectors can circumvent anti-Ad5 neutralizing antibodies, vector yields of Ad35 vectors are often inferior to those of Ad5 vectors. In this study, we developed novel Ad35 vectors containing the Ad5 E4 orf 4, 6, and 6/7 or the Ad5 E4 orf 6 and 6/7 for efficient vector production, and compared their properties. These E4-modified Ad35 vectors efficiently propagated to a similar extent at virus titers comparable to those of Ad5 vectors. An Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 mediated more efficient transduction than that containing the Ad5 E4 orf 6 and 6/7 in human cultured cells. Furthermore, insertion of an arginine-glycine-aspartate (RGD) peptide in the fiber region of an Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 significantly improved the transgene product-specific antibody production following intramuscular administration in mice. The Ad35 vector containing the RGD peptide mediated efficient vaccine effects even in the mice pre-immunized with an Ad5.

4.
Eur J Nucl Med Mol Imaging ; 51(9): 2663-2671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570359

ABSTRACT

PURPOSE: A probe for targeted alpha therapy (TAT) using the RGD peptide (Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]1)) with albumin-binding moiety (ABM) was recently developed. [211At]1 highly accumulated in tumors and significantly inhibited tumor growth in U-87 MG tumor-bearing mice. However, high [211At]1 retention in blood may cause critical adverse events, such as hematotoxicity. Therefore, we attempted to accelerate the blood clearance of [211At]1 by competitively inhibiting the binding of [211At]1 to albumin to modulate the pharmacokinetics of the former. METHODS: To evaluate the effects of albumin-binding inhibitors in normal mice, sodium 4-(4-iodophenyl)butanoate at 2, 5, or 10 molar equivalents of blood albumin was administered at 1-h postinjection of [211At]1. The biodistribution of [211At]1, SPECT/CT imaging of [67Ga]Ga-DOTA-K(IPBA)-c(RGDfK) ([67Ga]2), and the therapeutic effects of [211At]1 were compared with or without IPBA administration in U-87 MG tumor-bearing mice. RESULTS: Blood radioactivity of [211At]1 was decreased in a dose-dependent manner with IPBA in normal mice. In U-87 MG tumor-bearing mice, the blood radioactivity and accumulation in nontarget tissues of [211At]1 were decreased by IPBA. Meanwhile, tumor [211At]1 accumulation was not changed at 3-h postinjection of IPBA. In SPECT/CT imaging of [67Ga]2, IPBA administration dramatically decreased radioactivity in nontarget tissues, and only tumor tissue was visualized. In therapeutic experiments, [211At]1 with IPBA injected-group significantly inhibited tumor growth compared to the control group. CONCLUSION: IPBA administration (as an albumin-binding inhibitor) could modulate the pharmacokinetics and enhance the therapeutic effects of [211At]1.


Subject(s)
Oligopeptides , Animals , Mice , Oligopeptides/pharmacokinetics , Oligopeptides/chemistry , Tissue Distribution , Cell Line, Tumor , Humans , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Albumins/chemistry , Albumins/pharmacokinetics , Protein Binding , Male , Isotope Labeling , Serum Albumin/chemistry , Female , Single Photon Emission Computed Tomography Computed Tomography
5.
Int J Biol Macromol ; 267(Pt 2): 131636, 2024 May.
Article in English | MEDLINE | ID: mdl-38641287

ABSTRACT

Although bioactive peptides enhancing bone healing have demonstrated effectiveness in treating bone defects, in vivo instability poses a challenge to their clinical application. Currently reported peptide delivery systems do not meet the demands of bone tissue repair regarding stability and peptide release efficacy. Herein, the self-assembling recombinant chimeric protein (Sbp5-2RGD) is developed by genetic engineering with cell adhesion peptide RGD as the targeted peptide and a newly discovered scallop byssal-derived protein Sbp5-2 that can assemble into wet stable films as the structural domain. In vitro studies show that the Sbp5-2RGD film exhibits excellent extensibility and biocompatibility. In vitro and in vivo degradation experiments demonstrate that the film remains stable due to the layer-by-layer degradation mode, resulting in sustained delivery of RGD in situ for up to 4 weeks. Consequently, the film can effectively promote osteogenesis, which accelerates bone defect healing and the implants osseointegration. Cell-level studies further show that the film up-regulates the expression of genes and proteins (ALP, OCN, OSX, OPN, RUNX2, VEGF) associated with osteogenesis and angiogenesis. Overall, this novel protein film represents an intelligent platform for peptide immobilization, protection, and release through its self-assembly, dense structure, and degradation mode, providing a therapeutic strategy for bone repair.


Subject(s)
Genetic Engineering , Oligopeptides , Animals , Humans , Mice , Drug Delivery Systems , Genetic Engineering/methods , Oligopeptides/chemistry , Oligopeptides/pharmacology , Osseointegration/drug effects , Osteogenesis/drug effects , Pectinidae , Rats, Sprague-Dawley , Male , Rats
6.
J Colloid Interface Sci ; 664: 454-468, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38484514

ABSTRACT

Nowadays, diseases associated with an ageing population, such as osteoporosis, require the development of new biomedical approaches to bone regeneration. In this regard, mechanotransduction has emerged as a discipline within the field of bone tissue engineering. Herein, we have tested the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs), obtained by the thermal decomposition method, with an average size of 13 nm, when exposed to the application of an external magnetic field for mechanotransduction in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The SPIONs were functionalized with an Arg-Gly-Asp (RGD) peptide as ligand to target integrin receptors on cell membrane and used in colloidal state. Then, a comprehensive and comparative bioanalytical characterization of non-targeted versus targeted SPIONs was performed in terms of biocompatibility, cell uptake pathways and mechanotransduction effect, demonstrating the osteogenic differentiation of hBM-MSCs. A key conclusion derived from this research is that when the magnetic stimulus is applied in the first 30 min of the in vitro assay, i.e., when the nanoparticles come into contact with the cell membrane surface to initiate endocytic pathways, a successful mechanotransduction effect is observed. Thus, under the application of a magnetic field, there was a significant increase in runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) gene expression as well as ALP activity, when cells were exposed to RGD-functionalized SPIONs, demonstrating osteogenic differentiation. These findings open new expectations for the use of remotely activated mechanotransduction using targeted magnetic colloidal nanoformulations for osteogenic differentiation by drug-free cell therapy using minimally invasive techniques in cases of bone loss.


Subject(s)
Mechanotransduction, Cellular , Osteogenesis , Humans , Cell Differentiation , Magnetic Fields , Oligopeptides/pharmacology , Cells, Cultured
7.
Biomolecules ; 14(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38397461

ABSTRACT

We previously reported that acid-degradable methylated ß-cyclodextrins (Me-ß-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvß3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvß3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvß3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvß3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvß3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy.


Subject(s)
Neoplasms , Peptides, Cyclic , Rotaxanes , beta-Cyclodextrins , Humans , Rotaxanes/pharmacology , Rotaxanes/chemistry , Rotaxanes/metabolism , beta-Cyclodextrins/chemistry , Oligopeptides/chemistry , Neoplasms/drug therapy , Integrins
8.
Chemistry ; 30(1): e202302481, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37823243

ABSTRACT

The increasing prevalence of neurodegenerative diseases has spurred researchers to develop advanced 3D models that accurately mimic neural tissues. Hydrogels stand out as ideal candidates as their properties closely resemble those of the extracellular matrix. A critical challenge in this regard is to comprehend the influence of the scaffold's mechanical properties on cell growth and differentiation, thus enabling targeted modifications. In light of this, a synthesis and comprehensive analysis of acrylamide-based hydrogels incorporating a peptide has been conducted. Adequate cell adhesion and development is achieved due to their bioactive nature and specific interactions with cellular receptors. The integration of a precisely controlled physicochemical hydrogel matrix and inclusion of the arginine-glycine-aspartic acid peptide sequence has endowed this system with an optimal structure, thus providing a unique ability to interact effectively with biomolecules. The analysis fully examined essential properties governing cell behavior, including pore size, mechanical characteristics, and swelling ability. Cell-viability experiments were performed to assess the hydrogel's biocompatibility, while the incorporation of grow factors aimed to promote the differentiation of neuroblastoma cells. The results underscore the hydrogel's ability to stimulate cell viability and differentiation in the presence of the peptide within the matrix.


Subject(s)
Hydrogels , Tissue Engineering , Tissue Engineering/methods , Hydrogels/chemistry , Peptides/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Cell Adhesion
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2347-2357, 2024 04.
Article in English | MEDLINE | ID: mdl-37831114

ABSTRACT

Nanotechnology and drug co-delivery offer a novel avenue in drug delivery research liposome-based co-delivery of anticancer drugs targeting the apoptosis pathway as a promising new approach to treat cancer. In this study, a co-delivery system of liposomes (arsenic trioxide/curcumin) modified with RGD peptide was designed to aim for enhancing the treatment of prostate cancer cells (PC3 cell line). Liposomal co-loaded curcumin and arsenic trioxide modified by RGD peptide (NLPs-RGD-Cur-ATO) were prepared by thin-layer lipid hydration techniques for the treatment of prostate cancer. The stability of the NLPs-RGD-Cur-ATO was evaluated by particle size analysis through dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). The percentage of cytotoxicity and apoptotic effect in PC3 cells treated with NLPs-RGD-Cur-ATO were detected by MTT and Annexin V-FITC (fluorescein isothiocyanate)/PI affinity assay, respectively. The particle size of NLPs-RGD-Cur-ATO was approximately 100 nm, with an encapsulation efficiency of about 99.52% and 70.61%, for ATO and Cur, respectively. Besides, NLPs-RGD-Cur-ATO displayed an enhanced anti-proliferative effect, increased the percentage of apoptotic cells 98 ± 1.85% (p < 0.0001), and significantly reduced EGFR gene expression level (p < 0.001) in the cell line tested. These results indicated that our NLPs-RGD-Cur-ATO co-delivery system was a promising strategy for prostate cancer therapy.


Subject(s)
Antineoplastic Agents , Curcumin , Prostatic Neoplasms , Male , Humans , Arsenic Trioxide/pharmacology , Curcumin/pharmacology , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Liposomes , Oligopeptides/pharmacology , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis
10.
Eur J Nucl Med Mol Imaging ; 51(2): 412-421, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819452

ABSTRACT

PURPOSE: We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5. METHODS: Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects. RESULTS: The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner. CONCLUSION: The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.


Subject(s)
Neoplasms , Positron-Emission Tomography , Mice , Animals , Tissue Distribution , Butyric Acid , Albumins , Cell Line, Tumor , Gallium Radioisotopes
11.
Chembiochem ; 25(2): e202300642, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37947251

ABSTRACT

In recent years, targeted drug delivery has attracted a great interest for enhanced therapeutic efficiency, with diminished side effects, especially in cancer therapy. Cell penetrating peptides (CPPs) like HIV1-TAT peptides, appear to be the perfect vectors for translocating drugs or other cargoes across the plasma membrane, but their application is limited mostly due to insufficient specificity for intended targets. Although these molecules were successfully used, the mechanism by which the peptides enter the cell interior still needs to be clarified. The tripeptide motif RGD (arginine-glycine-aspartate), found in extracellular matrix proteins has high affinity for integrin receptors overexpressed in cancer and it is involved in different phases of disease progression, including proliferation, invasion and migration. Discovery of new peptides with high binding affinity for disease receptors and permeability of plasma membranes is desirable for both, development of targeted drug delivery systems and early detection and diagnosis. To complement the TAT peptide with specific targeting ability, we conjugated it with an integrin-binding RGD motif. Although the idea of RGD-CPPs conjugates is not entirely new,[1] here we describe the permeability abilities and specificity of integrin receptors of RGD-TAT peptides in model membranes. Our findings reveal that this novel RGD sequence based on TAT peptide maintains its ability to permeate lipid membranes and exhibits specificity for integrin receptors embedded in giant unilamellar vesicles. This promising outcome suggests that the RGD-TAT peptide has significant potential for applications in the field of targeted drug delivery systems.


Subject(s)
Cell-Penetrating Peptides , Neoplasms , Humans , Integrins/metabolism , Oligopeptides/chemistry , Cell-Penetrating Peptides/chemistry , Lipids
12.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38139797

ABSTRACT

This paper reports on the development of stable tumor-specific gold nanoparticles (AuNPs) activated by neutron irradiation as a therapeutic option for the treatment of cancer with high tumor angiogenesis. The AuNPs were designed with different mono- or dithiol-ligands and decorated with different amounts of Arg-Gly-Asp (RGD) peptides as a tumor-targeting vector for αvß3 integrin, which is overexpressed in tissues with high tumor angiogenesis. The AuNPs were evaluated for avidity in vitro and showed favorable properties with respect to tumor cell accumulation. Furthermore, the therapeutic properties of the [198Au]AuNPs were evaluated in vitro on U87MG cells in terms of cell survival, suggesting that these [198Au]AuNPs are a useful basis for future therapeutic concepts.

13.
J Control Release ; 361: 750-765, 2023 09.
Article in English | MEDLINE | ID: mdl-37586563

ABSTRACT

Targeted delivery of small extracellular vesicles (sEVs) with low immunogenicity and fewer undesirable side effects are needed for spinal cord injury (SCI) therapy. Here, we show that RGD (Arg-Gly-Asp) peptide-decorated CD163+ macrophage-derived sEVs can deliver TGF-ß to the neovascular endothelial cells of the injured site and improve neurological function after SCI. CD163+ macrophages are M2 macrophages that express TGF-ß and are reported to promote angiogenesis and vascular stabilization in various diseases. Enriched TGF-ß EVs were crucial in angiogenesis and tissue repair. However, TGF-ß also boosts the formation of fibrous or glial scars, detrimental to neurological recovery. Our results found RGD-modified CD163+ sEVs accumulated in the injured region and were taken up by neovascular endothelial cells. Furthermore, RGD-CD163+ sEVs promoted vascular regeneration and stabilization in vitro and in vivo, resulting in substantial functional recovery post-SCI. These data suggest that RGD-CD163+ sEVs may be a potential strategy for treating SCI.


Subject(s)
Extracellular Vesicles , Spinal Cord Injuries , Rats , Animals , Rats, Sprague-Dawley , Endothelial Cells , Spinal Cord Injuries/drug therapy , Macrophages , Oligopeptides/therapeutic use , Peptides/therapeutic use , Transforming Growth Factor beta/therapeutic use , Spinal Cord
14.
J Biomed Mater Res B Appl Biomater ; 111(10): 1800-1812, 2023 10.
Article in English | MEDLINE | ID: mdl-37255007

ABSTRACT

Metallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid or a carbon dioxide saturation process. The coatings were deposited using a voltage of 10 V for 1 min. The prepared coatings were examined using SEM, EDS, FTIR, and XPS techniques. In addition, the wettability of these surfaces, corrosion resistance, adhesion of the coatings to the metallic substrate, and their antimicrobial activity (E. coli, S. aureus) and cytocompatibility properties using the MTT and LDH assays were studied. The coatings produced tightly covered the metallic substrate. Spectroscopic studies confirmed that the peptide did not detach from the chitosan chain during electrophoretic deposition. All tested samples showed high corrosion resistance (corrosion current density measured in nA/cm2 ). The deposited coatings contributed to a significant increase in the antimicrobial activity of the samples against Gram-positive and Gram-negative bacteria (reduction in bacterial counts from 99% to, for CS-RGD-Acid and the S. aureus strain, total killing capacity). MTT and LDH results showed high compatibility with bone cells of the modified surfaces compared to the bare substrate (survival rates above 75% under indirect contact conditions and above 100% under direct contact conditions). However, the adhesion of the coatings was considered weak.


Subject(s)
Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Anti-Bacterial Agents/pharmacology , Alloys/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Oligopeptides/pharmacology , Suspensions , Osteoblasts , Titanium/chemistry
15.
J Mater Sci Mater Med ; 34(4): 18, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37043085

ABSTRACT

In recent years, the fabrication of nano-drug delivery systems for targeted treatment of thrombus has become a research hotspot. In this study, we intend to construct a biomimetic nanomedicine for targeted thrombus treatment. The poly lactic-co-glycolic acid (PLGA) was selected as the nanocarrier material. Then, urokinase and perfluoro-n-pentane (PFP) were co-loaded into PLGA by the double emulsification solvent evaporation method to prepare phase change nanoparticles PPUNPs. Subsequently, the RGD peptide-modified red blood cell membrane (RBCM) was coated on the surface of PPUNPs to prepare a biomimetic nano-drug carrier (RGD-RBCM@PPUNPs). The as-prepared RGD-RBCM@PPUNPs possessed a "core-shell" structure, have good dispersibility, and inherited the membrane protein composition of RBCs. Under ultrasound stimulation, the loaded urokinase could be rapidly released. In vitro cell experiments showed that RGD-RBCM@PPUNPs had good hemocompatibility and cytocompatibility. Due to the coated RGD-RBC membrane, RGD-RBCM@PPUNPs could effectively inhibit the uptake of macrophages. In addition, RGD-RBCM@PPUNPs showed better thrombolytic function in vitro. Overall, the results suggested that this biomimetic nanomedicine provided a promising therapeutic strategy for the targeted therapy of thrombosis.


Subject(s)
Nanoparticles , Thrombosis , Humans , Biomimetics , Urokinase-Type Plasminogen Activator , Nanoparticles/chemistry , Oligopeptides/chemistry , Thrombosis/drug therapy , Thrombolytic Therapy
16.
Biomed Mater ; 18(4)2023 05 17.
Article in English | MEDLINE | ID: mdl-37075773

ABSTRACT

Hydrogels have drawn much attention in the field of tissue regeneration and wound healing owing to the application of biocompatible peptides to tailor structural features necessitating optimal tissue remodeling performance. In the current study, polymers and peptide were explored to develop scaffolds for wound healing and skin tissue regeneration. Alginate (Alg), chitosan (CS), and arginine-glycine-aspartate (RGD) were used to fabricate composite scaffolds crosslinked with tannic acid (TA), which also served as a bioactive. The use of RGD transformed the physicochemical and morphological features of the 3D scaffolds and TA crosslinking of the scaffolds improved their mechanical properties, specifically tensile strength, compressive Young's modulus, yield strength, and ultimate compressive strength. The incorporation of TA as both a crosslinker and a bioactive allowed for 86% encapsulation efficiency and burst release of 57% of TA in 24 h, accompanied by an 8.5% steady release per day of up to 90% over 5 d. The scaffolds increased mouse embryonic fibroblast cell viability over 3 d, progressing from slightly cytotoxic to non-cytotoxic (cell viability >90%). Wound closure and tissue regeneration evaluations in a SpragueDawley rat wound model at predetermined wound healing time points highlighted the superiority of the Alg-RGD-CS and Alg-RGD-CS-TA scaffolds over the commercial comparator product and control. The scaffolds' superior performance included accelerated tissue remodeling performance from the early to the late stages of wound healing, indicated by the lack of defects and scarring in scaffold-treated tissues. This promising performance supports the design of wound dressings that can act as delivery systems for the treatment of acute and chronic wounds.


Subject(s)
Chitosan , Rats , Animals , Mice , Chitosan/chemistry , Tissue Scaffolds/chemistry , Alginates/chemistry , Fibroblasts , Wound Healing , Oligopeptides
17.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110700

ABSTRACT

Short peptides containing the Arg-Gly-Asp (RGD) fragment can selectively bind to integrins on the surface of tumor cells and are attractive transport molecules for the targeted delivery of therapeutic and diagnostic agents to tumors (for example, glioblastoma). We have demonstrated the possibility of obtaining the N- and C-protected RGD peptide containing 3-amino-closo-carborane and a glutaric acid residue as a linker fragment. The resulting carboranyl derivatives of the protected RGD peptide are of interest as starting compounds in the synthesis of unprotected or selectively protected peptides, as well as building blocks for preparation of boron-containing derivatives of the RGD peptide of a more complex structure.


Subject(s)
Boranes , Neoplasms , Humans , Boranes/chemistry , Oligopeptides , Peptides , Neoplasms/pathology
18.
Adv Mater ; 35(24): e2209769, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934418

ABSTRACT

The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO3 nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.


Subject(s)
Mechanotransduction, Cellular , Osteogenesis , Cell Differentiation , Bone Regeneration , Fibronectins/pharmacology
19.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36958606

ABSTRACT

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Subject(s)
Drug Carriers , Nanostructures , Humans , Rats , Female , Animals , Drug Carriers/chemistry , Liposomes , Follicle Stimulating Hormone , Caco-2 Cells , Nanostructures/chemistry , Administration, Oral , Capsules , Oligopeptides , Particle Size
20.
Biomater Adv ; 149: 213392, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965403

ABSTRACT

Bone tissue engineering aims to diversify and enhance the strategies for bone regeneration to overcome bone-related health problems. Bone mimetic peptides such as Gly-Arg-Gly-Asp-Ser (RGD) are useful tools for osteogenic differentiation. Similarly, photobiomodulation (PBM) at 600-800 nm of wavelength range improves bone tissue healing via the production of intracellular reactive oxygen species (ROS), ATP synthesis, and nitric oxide (NO) release. Besides, traditional monolayer cell culture models have limited conditions to exhibit the details of a mechanism such as a peptide or PBM therapy. However, scaffold-free microtissues (SFMs) can mimic a tissue more properly and be an efficient way to understand the mechanism of therapy via cell-cell interaction. Thus, the synergistic effects of RGD peptide (1 mM) and PBM applications (1 J/cm2 energy density at 655 nm of wavelength and 5 J/cm2 energy density at 808 nm of wavelength) were evaluated on SFMs formed with the co-culture of Human Bone Marrow Stem Cells (hBMSC) and Human Umbilical Vein Endothelial Cells (HUVEC) for osteogenic differentiation. Cell viability assays, mechanistic analysis, and the evaluation of osteogenic differentiation markers were performed. Combined therapies of RGD and PBM were more successful to induce osteogenic differentiation than single therapies. Especially, RGD + PBM at 655 nm group exhibited a higher capability of osteogenic differentiation via ROS production, ATP synthesis, and NO release. It can be concluded that the concomitant use of RGD and PBM may enhance bone regeneration and become a promising therapeutic tool to heal bone-related problems in clinics.


Subject(s)
Low-Level Light Therapy , Osteogenesis , Humans , Reactive Oxygen Species/pharmacology , Bone and Bones , Oligopeptides/pharmacology , Human Umbilical Vein Endothelial Cells , Cell Differentiation , Integrins , Adenosine Triphosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL