Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 106(2): 127-139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38468396

ABSTRACT

Leber congenital amaurosis (LCA) and early-onset retinal degeneration (EORD) are inherited retinal diseases (IRD) characterized by early-onset vision impairment. Herein, we studied 15 Saudi families by whole exome sequencing (WES) and run-of-homozygosity (ROH) detection via AutoMap in 12/15 consanguineous families. This revealed (likely) pathogenic variants in 11/15 families (73%). A potential founder variant was found in RPGRIP1. Homozygous pathogenic variants were identified in known IRD genes (ATF6, CRB1, CABP4, RDH12, RIMS2, RPGRIP1, SPATA7). We established genotype-driven clinical reclassifications for ATF6, CABP4, and RIMS2. Specifically, we observed isolated IRD in the individual with the novel RIMS2 variant, and we found a retina-enriched RIMS2 isoform conserved but not annotated in mouse. The latter illustrates potential different phenotypic consequences of pathogenic variants depending on the particular tissue/cell-type specific isoforms they affect. Lastly, a compound heterozygous genotype in GUCY2D in one non-consanguineous family was demonstrated, and homozygous variants in novel candidate genes ATG2B and RUFY3 were found in the two remaining consanguineous families. Reporting these genes will allow to validate them in other IRD cohorts. Finally, the missing heritability of the two unsolved IRD cases may be attributed to variants in non-coding regions or structural variants that remained undetected, warranting future WGS studies.


Subject(s)
Consanguinity , Exome Sequencing , Pedigree , Phenotype , Humans , Female , Male , Retina/pathology , Homozygote , Retinal Diseases/genetics , Protein Isoforms/genetics , Exome/genetics , Mutation , Child , Genetic Predisposition to Disease , Leber Congenital Amaurosis/genetics , Cohort Studies , Genotype , Genetic Association Studies/methods
2.
Exp Neurol ; 374: 114690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218585

ABSTRACT

RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Nervous System Diseases , Tumor Suppressor Proteins , Animals , Female , Male , Mice , Brain/metabolism , Brain Injuries/pathology , Brain Injuries, Traumatic/pathology , Cell Cycle Proteins/metabolism , Cerebellum/pathology , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Hippocampus/metabolism , Maze Learning/physiology , Mice, Knockout , Nervous System Diseases/pathology , Proteostasis , RNA-Binding Proteins/metabolism
3.
BMC Cancer ; 23(1): 315, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37020199

ABSTRACT

BACKGROUND: DNA methylation is one of the most promising biomarkers in predicting the prognosis of colorectal cancer (CRC). We aimed to develop a DNA methylation biomarker that could evaluate the prognosis of CRC. METHODS: A promising DNA methylation biomarker was developed by hypermethylated genes in cancer tissue that were identified from Illumina EPIC methylation arrays. A cohort comprising 30 pairs of snap-frozen tumor tissue and adjacent normal tissue was used for correlation analysis between the methylation and expression status of the marker. The other cohort comprising 254 formalin-fixed paraffin-embedded (FFPE) tumor tissue from 254 CRC patients was used for prognosis analysis. RESULTS: Regulating synaptic membrane exocytosis 2 (RIMS2) was hypermethylated and lowly expressed in CRC comparing to adjacent normal tissue. Hypermethylation of RIMS2 in CRC was correlated with less frequent KRAS mutant and high differentiation. RIMS2 promoter methylation showed independent predictive value for survival outcome (P = 0.015, HR 1.992, 95% CI [(1.140-3.48)]), and a combination of RIMS2 methylation with KRAS status could predict prognosis better. CONCLUSIONS: RIMS2 is frequently hypermethylated in CRC, which can silence the expression of RIMS2. RIMS2 methylation is a novel biomarker for predicting the prognosis of CRC.


Subject(s)
Colorectal Neoplasms , Humans , Neoplasm Staging , Colorectal Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Prognosis , DNA Methylation , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
4.
Am J Hum Genet ; 106(6): 859-871, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32470375

ABSTRACT

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD.


Subject(s)
Eye Diseases, Hereditary/genetics , GTP-Binding Proteins/genetics , Genetic Diseases, X-Linked/genetics , Loss of Function Mutation , Myopia/genetics , Nerve Tissue Proteins/genetics , Night Blindness/genetics , Adult , Alleles , Alternative Splicing , Brain/metabolism , Cell Line , Child , Child, Preschool , Diagnosis, Differential , Family Health , Female , France , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Glucose/metabolism , Humans , Insulin Secretion , Male , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pancreas/metabolism , Pedigree , Retina/metabolism , Saudi Arabia , Senegal
5.
Neuroscience ; 440: 299-315, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32335213

ABSTRACT

The tumor suppressor RNA-binding motif 5 (RBM5) regulates the expression levels and cassette exon-definition (i.e. splicing) of a select set of mRNAs in a tissue-specific manner. Most RBM5-regulated targets were identified in oncological investigations and frequently involve genes which mediate apoptotic cell death. Little is known about the role of RBM5 in the brain. Also, it is unclear if a brain injury may be required to detect RBM5 mediated effects on pro-apoptotic genes due to their low expression levels in the healthy adult CNS at baseline. Conditional/floxed (brain-specific) gene deleter mice were generated to elucidate CNS-specific RBM5 mRNA targets. Male/female mice were subjected to a severe controlled cortical impact (CCI) traumatic brain injury (TBI) in order to increase the background expression of pro-death mRNAs and facilitate testing of the hypothesis that RBM5 inhibition decreases post-injury upregulation of caspases/FAS in the CNS. As expected, a CCI increased caspases/FAS mRNA in the injured cortex. RBM5 KO did not affect their levels or splicing. Surprisingly, KO increased the mRNA levels of novel targets including casein kinase 2 alpha prime interacting protein (Csnka2ip/CKT2) - a gene not thought to be expressed in the brain, contrary to findings here. Twenty-two unique splicing events were also detected in KOs including increased block-inclusion of cassette exons 20-22 in regulating synaptic membrane exocytosis 2 (Rims2). In conclusion, here we used genome-wide transcriptomic analysis on healthy and injured RBM5 KO mouse brain tissue to elucidate the first known gene targets of this enigmatic RBP in this CNS.


Subject(s)
Cell Cycle Proteins , Tumor Suppressor Proteins , Animals , Brain/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Female , Male , Mice , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
6.
Article in English | MEDLINE | ID: mdl-31153890

ABSTRACT

Tardive dyskinesia (TD) is an adverse movement disorder induced by chronic treatment with antipsychotics drugs. The contribution of common genetic variants to TD susceptibility has been investigated in recent years, but with limited success. The aim of the current study was to investigate the potential contribution of rare variants to TD vulnerability. In order to identify TD risk genes, we performed whole-exome sequencing (WES) and gene-based collapsing analysis focusing on rare (allele frequency < 1%) and putatively deleterious variants (qualifying variants). 82 Jewish schizophrenia patients chronically treated with antipsychotics were included and classified as having severe TD or lack of any abnormal movements based on a rigorous definition of the TD phenotype. First, we performed a case-control, exome-wide collapsing analysis comparing 39 schizophrenia patients with severe TD to 3118 unrelated population controls. Then, we checked the potential top candidate genes among 43 patients without any TD manifestations. All the genes that were found to harbor one or more qualifying variants in patients without any TD features were excluded from the final list of candidate genes. Only one gene, regulating synaptic membrane exocytosis 2 (RIMS2), showed significant enrichment of qualifying variants in TD patients compared with unrelated population controls after correcting for multiple testing (Fisher's exact test p = 5.32E-08, logistic regression p = 2.50E-08). Enrichment was caused by a single variant (rs567070433) due to a frameshift in an alternative transcript of RIMS2. None of the TD negative patients had qualifying variants in this gene. In a validation cohort of 140 schizophrenia patients assessed for TD, the variant was also not detected in any individual. Some potentially suggestive TD genes were detected in the TD cohort and warrant follow-up in future studies. No significant enrichment in previously reported TD candidate genes was identified. To the best of our knowledge, this is the first WES study of TD, demonstrating the potential role of rare loss-of-function variant enrichment in this pharmacogenetic phenotype.


Subject(s)
Dyskinesia, Drug-Induced/genetics , Exome Sequencing/statistics & numerical data , Adult , Aged , Antipsychotic Agents/adverse effects , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Schizophrenia/complications , Schizophrenia/drug therapy , Young Adult
7.
Front Genet ; 9: 665, 2018.
Article in English | MEDLINE | ID: mdl-30619482

ABSTRACT

Autism spectrum disorder (ASD) is heterogeneous in symptom and etiology. Rare copy number variations (CNVs) are important genetic factors contributing to ASD. Currently chromosomal microarray (CMA) detecting CNVs is recommended as a first-tier diagnostic assay, largely based on research in North America and Europe. The feature of rare CNVs has not been well characterized in ASD cohorts from non-European ancestry. In this study, high resolution CMA was utilized to investigate rare CNVs in a Chinese cohort of ASD (n = 401, including 177 mildly/moderately and 224 severely affected individuals), together with an ancestry-matched control cohort (n = 197). Diagnostic yield was about 4.2%, with 17 clinically significant CNVs identified in ASD individuals, of which 12 CNVs overlapped with recurrent autism risk loci or genes. Autosomal rare CNV burden analysis showed an overrepresentation of rare loss events in ASD cohort, whereas the rate of rare gain events correlated with the phenotypic severity. Further analysis showed rare losses disrupting genes highly intolerant of loss-of-function variants were enriched in the ASD cohort. Among these highly constrained genes disrupted by rare losses, RIMS2 is a promising candidate contributing to ASD risk. This pilot study evaluated clinical utility of CMA and the feature of rare CNVs in Chinese ASD, with candidate genes identified as potential risk factors.

SELECTION OF CITATIONS
SEARCH DETAIL