Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.321
Filter
1.
Methods Mol Biol ; 2847: 109-120, 2025.
Article in English | MEDLINE | ID: mdl-39312139

ABSTRACT

Computational RNA design was introduced in the 1990s by Vienna's RNAinverse, which is a simple inverse RNA folding solver. Further developments and contemporary RNA design techniques, in addition to improved efficiency, offer more precise control over the designed sequences. incaRNAfbinv (incaRNAtion with RNA fragment-based inverse) is one such extension that builds upon RNAinverse and includes coarse-graining manipulations. The idea is that an RNA secondary structure can be decomposed to fragments of RNA motifs, and that a significant number of known natural RNA motifs exhibit a remarkable preservation in particular locations in a variety of genomes. This is taken into consideration by the ability of the user to select motifs that are known to be functional for a precise design, whilst the algorithm is more adaptable on other motifs. The latest version, incaRNAfbinv 2.0, is a free-to-use web-server which deploys the above methodology of fragment-based design. Its control over the decomposed RNA secondary structure motifs includes, among other advanced features, the insertion of constraints in a flexible manner. The resultant RNA designed sequences are ranked by their proximity to classical RNA design. Features and capabilities of incaRNAfbinv 2.0 are hereby illustrated with an example taken from hepatitis delta virus (HDV). The web-server is demonstrated in assisting to locate a known RNA motif that is responsible for HDV-3 RNA editing in more HDV genotypes than thought of before. This shows that computational RNA design by using inverse RNA folding is also a valuable strategy for locating functional RNA motifs in genomic data, in addition to artificially designing synthetic RNAs.


Subject(s)
Hepatitis Delta Virus , Nucleic Acid Conformation , Nucleotide Motifs , RNA, Viral , Hepatitis Delta Virus/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Nucleotide Motifs/genetics , Algorithms , Computational Biology/methods , Software , RNA Folding
2.
J Integr Plant Biol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352303

ABSTRACT

Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.

3.
Comput Biol Chem ; 113: 108229, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39383624

ABSTRACT

BACKGROUND: Lower-grade glioma (LGG) refers to WHO grade 2 and 3 gliomas. Surgery combined with radiotherapy and chemotherapy can significantly improve the prognosis of LGG patients, but tumor progression is still unavoidable. As a form of posttranscriptional regulation, RNA editing (RE) has been reported to be involved in tumorigenesis and progression and has been intensively studied recently. METHODS: Survival data and RE data were subjected to univariate and multivariate Cox regression analysis and lasso regression analysis to establish an RE risk score model. A nomogram combining the risk score and clinicopathological features was built to predict the 1-, 3-, and 5-year survival probability of patients. The relationship among ADAR1, SOD2 and SOAT1 was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) RESULTS: A risk model associated with RE was constructed and patients were divided into different risk groups based on risk scores. The model demonstrated strong prognostic capability, with the area under the ROC curve (AUC) values of 0.882, 0.938, and 0.947 for 1-, 3-, and 5-year survival predictions, respectively. Through receiver operating characteristic curve (ROC) curves and calibration curves, it was verified that the constructed nomogram had better performance than age, grade, and risk score in predicting patient survival probability. Apart from this functional analysis, the results of correlation analyses between risk differentially expressed genes (RDEGs) and RE help us to understand the underlying mechanism of RE in LGG. ADAR may regulate the expression of SOD2 and SOAT1 through gene editing. CONCLUSION: In conclusion, this study establishes a novel and accurate 17-RE model and a nomogram for predicting the survival probability of LGG patients. ADAR may affect the prognosis of glioma patients by influencing gene expression.

4.
Adv Sci (Weinh) ; : e2409004, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392366

ABSTRACT

Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered. sarID is further expanded to investigate binders of XIST, MALAT1, NBR2, and DANCR, demonstrating its broad applicability in identifying lncRNA-RNA interactions. The findings suggest that lncRNAs may regulate gene expression by interacting with mRNAs, expanding their roles beyond known functions as protein scaffolds, miRNA sponges, or guides for epigenetic modulators. sarID has the potential to be adapted for studying other specific RNAs, providing a novel immunoprecipitation-free method for uncovering RNA partners and facilitating the exploration of the RNA-RNA interactome.

5.
Expert Rev Mol Med ; 26: e20, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377535

ABSTRACT

Cervical cancer (CC), one of the most prevalent and detrimental gynaecologic cancers, evolves through genetic and epigenetic alterations resulting in the promotion of oncogenic activity and dysfunction of tumour-suppressing mechanisms. Despite medical advancement, the prognosis for advanced-stage patients remains extremely low due to high recurrence rates and resistance to existing treatments. Thereby, the search for potential prognostic biomarkers is heightened to unravel new modalities of CC pathogenesis and to develop novel anti-cancer therapies. Epitranscriptomic modifications, reversible epigenetic RNA modifications, regulate various biological processes by deciding RNA fate to mediating RNA interactions. This narrative review provides insight into the cellular and molecular roles of endogenous RNA-editing proteins and their associated epitranscriptomic modifications, especially N6-methyladenosine (m6A), 5-methylcytosine (m5C) and N1-methyladenosine (m1A), in governing the development, progression and metastasis of CC. We discussed the in-depth epitranscriptomic mechanisms underlying the regulation of over 50 RNAs responsible for tumorigenesis, proliferation, migration, invasion, survival, autophagy, stemness, epithelial-mesenchymal transition, metabolism (glucose, lipid, glutamate and glutamine), resistance (drug and radiation), angiogenesis and recurrence of CC. Additionally, we provided a concise overview of the therapeutic potential of targeting the altered expression of endogenous RNA-editing proteins and aberrant deposition of RNA modifications on both coding and non-coding RNAs in CC.


Subject(s)
Epigenesis, Genetic , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/metabolism , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , Gene Expression Regulation, Neoplastic , Transcriptome , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , RNA Processing, Post-Transcriptional , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
6.
Mol Cell ; 84(19): 3610-3626, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366350

ABSTRACT

Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.


Subject(s)
DNA Damage , DNA Repair , Epigenesis, Genetic , RNA , Humans , Animals , RNA/metabolism , RNA/genetics , Transcriptome , RNA Processing, Post-Transcriptional , Genomic Instability , RNA Editing , Adenosine/metabolism , Adenosine/analogs & derivatives , Adenosine/genetics
7.
BMC Plant Biol ; 24(1): 929, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370506

ABSTRACT

Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is celebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mitochondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pinnatifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.


Subject(s)
Crataegus , Genome, Mitochondrial , Crataegus/genetics , Phylogeny , Evolution, Molecular , Genome, Plant , RNA Editing
8.
Comput Struct Biotechnol J ; 23: 3418-3429, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39386942

ABSTRACT

Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epitranscriptomic regulator in cancer.

9.
Genome Biol ; 25(1): 258, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380061

ABSTRACT

Precise calling of promiscuous adenosine-to-inosine RNA editing sites from transcriptomic datasets is hindered by DNA mutations and sequencing/mapping errors. Here, we present a stepwise computational framework, called DEMINING, to distinguish RNA editing and DNA mutations directly from RNA sequencing datasets, with an embedded deep learning model named DeepDDR. After transfer learning, DEMINING can also classify RNA editing sites and DNA mutations from non-primate sequencing samples. When applied in samples from acute myeloid leukemia patients, DEMINING uncovers previously underappreciated DNA mutation and RNA editing sites; some associated with the upregulated expression of host genes or the production of neoantigens.


Subject(s)
Deep Learning , Mutation , RNA Editing , Humans , Leukemia, Myeloid, Acute/genetics , Sequence Analysis, RNA/methods
10.
Plant Sci ; 349: 112263, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299521

ABSTRACT

RNA editing is an important post-transcriptional event in all living cells. Within chloroplasts and mitochondria of higher plants, RNA editing involves the deamination of specific cytosine (C) residues in precursor RNAs to uracil (U). An increasing number of recent studies detail specificity of C-to-U RNA editing as an essential prerequisite for several plant stress-related responses. In this review, we summarize the current understanding of responses and functions of C-to-U RNA editing in plants under various stress conditions to provide theoretical reference for future research.

11.
Front Immunol ; 15: 1413704, 2024.
Article in English | MEDLINE | ID: mdl-39308856

ABSTRACT

Background: COVID-19 vaccines are crucial for reducing the threat and burden of the pandemic on global public health, yet the epigenetic, especially RNA editing in response to the vaccines remains unelucidated. Results: Our current study performed an epitranscriptomic analysis of RNA-Seq data of 260 blood samples from 102 healthy and SARS-CoV-2 naïve individuals receiving different doses of the COVID-19 vaccine and revealed dynamic, transcriptome-wide adenosine to inosine (A-to-I) RNA editing changes in response to COVID-19 vaccines (RNA editing in response to COVID-19 vaccines). 5592 differential RNA editing (DRE) sites in 1820 genes were identified, with most of them showing up-regulated RNA editing and correlated with increased expression of edited genes. These deferentially edited genes were primarily involved in immune- and virus-related gene functions and pathways. Differential ADAR expression probably contributed to RNA editing in response to COVID-19 vaccines. One of the most significant DRE in RNA editing in response to COVID-19 vaccines was in apolipoprotein L6 (APOL6) 3' UTR, which positively correlated with its up-regulated expression. In addition, recoded key antiviral and immune-related proteins such as IFI30 and GBP1 recoded by missense editing was observed as an essential component of RNA editing in response to COVID-19 vaccines. Furthermore, both RNA editing in response to COVID-19 vaccines and its functions dynamically depended on the number of vaccine doses. Conclusion: Our results thus underscored the potential impact of blood RNA editing in response to COVID-19 vaccines on the host's molecular immune system.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epigenesis, Genetic , RNA Editing , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Adenosine/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Transcriptome , Adenosine Deaminase/genetics , Male , Adult , Inosine , Female
12.
Plant Cell Physiol ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301683

ABSTRACT

In Arabidopsis, RNA editing alters more than 500 cytidines (C) to uridines (U) in mitochondrial transcripts, a process involving the family of pentatricopeptide repeat (PPR) proteins. Here, we report a previously uncharacterized mitochondrial PLS-type PPR protein, GEND2, which functions in the mitochondrial RNA editing. The T-DNA insertion in the 5'-untranslated region of GEND2, referred to as gend2-1, results in defective root development compared to wild-type (WT) plants. A comprehensive examination of mitochondrial RNA editing sites revealed a significant reduction in the gend2-1 mutant compared to WT plants, affecting six specific mitochondrial RNA editing sites, notably within the mitochondrial genes CcmFn-1, RPSL2 and ORFX. These genes encode critical components of cytochrome protein maturation pathway, mitochondrial ribosomal subunit, and twin arginine translocation subunits, respectively. Further analysis of the transcriptional profile of the gend2-1 mutant and wild type revealed a striking induction of expression in a cluster of genes associated with mitochondrial dysfunction and regulated by ANAC017, a key regulator coordinating organelle functions and stress responses. Intriguingly, the gend2-1 mutation activated an ANAC017-dependent signaling aimed at countering cell wall damage induced by cellulose synthase inhibitors, as well as an ANAC017-independent pathway that retarded root growth under normal condition. Collectively, our findings identify a novel mitochondrial PLS-type PPR protein GEND2, which participates in the editing of six specific mitochondrial RNA editing sites. Furthermore, the gend2-1 mutation triggers two distinct pathways in plants: an ANAC017-dependent pathway and ANAC017-independent pathway.

13.
RNA Biol ; 21(1): 29-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39256954

ABSTRACT

Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.


Subject(s)
Adenosine , Evolution, Molecular , Inosine , RNA Editing , Animals , Inosine/genetics , Inosine/metabolism , Bees/genetics , Adenosine/metabolism , Adenosine/genetics , Conserved Sequence , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
14.
Biochemistry (Mosc) ; 89(8): 1474-1489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39245456

ABSTRACT

Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.


Subject(s)
Adenosine Deaminase , Brain , Cell Differentiation , Huntington Disease , Induced Pluripotent Stem Cells , Organoids , RNA Editing , RNA-Binding Proteins , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Humans , Organoids/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Brain/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Trinucleotide Repeat Expansion
15.
BMC Plant Biol ; 24(1): 888, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343888

ABSTRACT

BACKGROUND: Cotton is one of the topmost fiber crops throughout the globe. During the last decade, abrupt changes in the climate resulted in drought, heat, and salinity. These stresses have seriously affected cotton production and significant losses all over the textile industry. The GhAGC kinase, a subfamily of AGC group and member of serine/threonine (Ser/Thr) protein kinases group and is highly conserved among eukaryotic organisms. The AGC kinases are compulsory elements of cell development, metabolic processes, and cell death in mammalian systems. The investigation of RNA editing sites within the organelle genomes of multicellular vascular plants, such as Gossypium hirsutum holds significant importance in understanding the regulation of gene expression at the post-transcriptional level. METHODS: In present work, we characterized twenty-eight GhAGC genes in cotton and constructed phylogenetic tree using nine different species from the most primitive to the most recent. RESULTS: In sequence logos analyses, highly conserved amino acid residues were found in G. hirsutum, G. arboretum, G. raimondii and A. thaliana. The occurrence of cis-acting growth and stress-related elements in the promoter regions of GhAGCs highlight the significance of these factors in plant development and abiotic stress tolerance. Ka/Ks levels demonstrated that purifying selection pressure resulting from segmental events was applied to GhAGC with little functional divergence. We focused on identifying RNA editing sites in G. hirsutum organelles, specifically in the chloroplast and mitochondria, across all 28 AGC genes. CONCLUSION: The positive role of GhAGCs was explored by quantifying the expression in the plant tissues under abiotic stress. These findings help in understanding the role of GhAGC genes under abiotic stresses which may further be used in cotton breeding for the development of climate smart varieties in abruptly changing climate.


Subject(s)
Chloroplasts , Gossypium , Phylogeny , RNA Editing , Stress, Physiological , Gossypium/genetics , Gossypium/physiology , RNA Editing/genetics , Stress, Physiological/genetics , Chloroplasts/genetics , Genome, Plant , Mitochondria/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome-Wide Association Study , Gene Expression Regulation, Plant , RNA, Mitochondrial/genetics , Genes, Plant
16.
Genomics ; 116(5): 110935, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243912

ABSTRACT

BACKGROUND: Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS: In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS: We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.


Subject(s)
Genome, Mitochondrial , Phylogeny , Santalum , Santalum/genetics , RNA Editing , RNA, Transfer/genetics , RNA, Transfer/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry
17.
Neuroscience ; 560: 167-180, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293730

ABSTRACT

Previous studies have demonstrated the roles of both microglia homeostasis and RNA editing in sepsis-associated encephalopathy (SAE), yet their relationship remains to be elucidated. In this study, we analyzed bulk and single-cell RNA-seq (scRNA) datasets containing 107 brain tissue and microglia samples of mice with microglial depletion and repopulation to explore canonical RNA editing associated with microglia homeostasis and to evaluate its role in SAE. Analysis of brain RNA-Seq of mice revealed hallmarks of microglial repopulation, including peak expressions of Apobec1 and Apobec3 at Day 5 and dramatically changed B2m RNA editing. Significant time-dependent changes in brain RNA editing during microglial depletion and repopulation were primarily observed in synaptic genes, such as Tbc1d24 and Slc1a2. ScRNA-Seq revealed heterogeneous RNA editing among microglia subpopulations and their distinct changes associated with microglia homeostasis. Moreover, repopulated microglia from LPS-induced septic mice exhibited intensified up-regulation of Apobec1 and Apobec3, with distinct RNA editing responses to LPS, mainly involved in immune-related pathways. The hippocampus from septic mice induced by peritoneal contamination and infection showed upregulated Apobec1 and Apobec3 expression, and altered RNA editing in immune-related genes, such as B2m and Mier1, and nervous-related lncRNA Meg3 and Snhg11, both of which were repressed by microglial depletion. Furthermore, the expression of complement-related genes, such as C4b and Cd47, was substantially correlated with RNA editing activity in microglia homeostasis and SAE. Our study demonstrates canonical RNA editing associated with microglia homeostasis and provides new insights into its potential role in SAE.

18.
Ecol Evol ; 14(9): e70248, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219575

ABSTRACT

Scheuchzeria palustris, the only species in the Scheuchzeriaceae family, plays a crucial role in methane production and transportation, influencing the global carbon cycle and maintaining ecosystem stability. However, it is now threatened by human activities and global warming. In this study, we generated new organelle genomes for S. palustris, with the plastome (pt) measuring 158,573 bp and the mitogenome (mt) measuring 420,724 bp. We predicted 296 RNA editing sites in mt protein-coding genes (PCGs) and 142 in pt-PCGs. Notably, abundant RNA editing sites in pt-PCGs likely originated from horizontal gene transfer between the plastome and mitogenome. Additionally, we identified positive selection signals in four mt-PCGs (atp4, ccmB, nad3, and sdh4) and one pt-PCG (rps7), which may contribute to the adaptation of S. palustris to low-temperature and high-altitude environments. Furthermore, we identified 35 mitochondrial plastid DNA (MTPT) segments totaling 58,479 bp, attributed to dispersed repeats near most MTPT. Phylogenetic trees reconstructed from mt- and pt-PCGs showed topologies consistent with the APG IV system. However, the conflicting position of S. palustris can be explained by significant differences in the substitution rates of its mt- and pt-PCGs (p < .001). In conclusion, our study provides vital genomic resources to support future conservation efforts and explores the adaptation mechanisms of S. palustris.

19.
Front Plant Sci ; 15: 1446015, 2024.
Article in English | MEDLINE | ID: mdl-39228832

ABSTRACT

Lycophytes and ferns represent one of the earliest-diverging lineages of vascular plants, with the Lycopodiaceae family constituting the basal clade among lycophytes. In this research, we successfully assembled and annotated the complete Lycopodium japonicum Thunb. (L. japonicum) mitochondrial genome (mitogenome) utilizing PacBio HiFi sequencing data, resulting in a single circular molecule with a size of 454,458 bp. 64 unique genes were annotated altogether, including 34 protein-coding genes, 27 tRNAs and 3 rRNAs. It also contains 32 group II introns, all of which undergo cis-splicing. We identified 195 simple sequence repeats, 1,948 dispersed repeats, and 92 tandem repeats in the L. japonicum mitogenome. Collinear analysis indicated that the mitogenomes of Lycopodiaceae are remarkably conserved compared to those of other vascular plants. We totally identified 326 RNA editing sites in 31 unique protein-coding genes with 299 sites converting cytosine to uracil and 27 sites the reverse. Notably, the L. japonicum mitogenome has small amounts foreign DNA from plastid or nuclear origin, accounting for only 2.81% of the mitogenome. The maximum likelihood phylogenetic analysis based on 23 diverse land plant mitogenomes and plastid genomes supports the basal position of lycophytes within vascular plants and they form a sister clade to all other vascular lineages, which is consistent with the PPG I classification system. As the first reported mitogenome of Lycopodioideae subfamily, this study enriches our understanding of Lycopodium mitogenomes, and sets the stage for future research on mitochondrial diversity and evolution within the lycophytes and ferns.

20.
BMC Plant Biol ; 24(1): 830, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232676

ABSTRACT

BACKGROUND: As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT: The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION: The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.


Subject(s)
Agropyron , Genome, Mitochondrial , RNA Editing , Agropyron/genetics , RNA, Transfer/genetics , Phylogeny , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL