Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Biosens Bioelectron ; 266: 116715, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39232432

ABSTRACT

Pathogenic bacteria in food or environment, can pose threats to public health, highlighting the requirement of tools for rapid and accurate detection of viable pathogenic bacteria. Herein, we report a sequential endoprotein RNase H2-activating DNAzyme assay (termed epDNAzyme) that enables nucleic acid extraction- and amplification-free detection of viable Salmonella enterica (S. enterica). The direct detection allows for a rapid detection of viable S. enterica within 25 min. Besides, the assay, based on sequential reporting strategy, circumvents internal modifications in the DNAzyme's active domain and improve its catalytic activity. The multiple-turnover DNAzyme cutting and the enhanced catalytic activity of DNAzyme render the epDNAzyme assay to be highly sensitive, and enables the detection of 190 CFU/mL and 0.1% viable S. enterica. The assay has been utilized to detect S. enterica contamination in food and clinical samples, indicating its potential as a promising tool for monitoring pathogen-associated biosafety.

2.
Mol Ther Nucleic Acids ; 35(3): 102272, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39176173

ABSTRACT

RNase H-dependent antisense oligonucleotides (gapmer ASOs) represent a class of nucleic acid therapeutics that bind to target RNA to facilitate RNase H-mediated RNA cleavage, thereby regulating the expression of disease-associated proteins. Integrating artificial nucleic acids into gapmer ASOs enhances their therapeutic efficacy. Among these, amido-bridged nucleic acid (AmNA) stands out for its potential to confer high affinity and stability to ASOs. However, a significant challenge in the design of gapmer ASOs incorporating artificial nucleic acids, such as AmNA, is the accurate prediction of their melting temperature (T m ) values. The T m is a critical parameter for designing effective gapmer ASOs to ensure proper functioning. However, predicting accurate T m values for oligonucleotides containing artificial nucleic acids remains problematic. We developed a T m prediction model using a library of AmNA-containing ASOs to address this issue. We measured the T m values of 157 oligonucleotides through differential scanning calorimetry, enabling the construction of an accurate prediction model. Additionally, molecular dynamics simulations were used to elucidate the molecular mechanisms by which AmNA modifications elevate T m , thereby informing the design strategies of gapmer ASOs.

3.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38993932

ABSTRACT

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

4.
Bioorg Chem ; 150: 107595, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968904

ABSTRACT

Combined therapies play a key role in the fight against complex pathologies, such as cancer and related drug-resistance issues. This is particularly relevant in targeted therapies where inhibition of the drug target can be overcome by cross-activating complementary pathways. Unfortunately, the drug combinations approved to date -mostly based on small molecules- face several problems such as toxicity effects, which limit their clinical use. To address these issues, we have designed a new class of RNase H-sensitive construct (3ASO) that can be disassembled intracellularly upon cell entry, leading to the simultaneous release of three different therapeutic oligonucleotides (ONs), tackling each of them the mRNA of a different protein. Here, we used Escherichia coli RNase H1 as a model to study an unprecedented mode of recognition and cleavage, that is mainly dictated by the topology of our RNA·DNA-based hybrid construct. As a model system for our technology we have created 3ASO constructs designed to specifically inhibit the expression of HER2, Akt and Hsp27 in HER2+ breast cancer cells. These trifunctional ON tools displayed very low toxicity and good levels of antiproliferative activity in HER2+ breast cancer cells. The present study will be of great potential in the fight against complex pathologies involving multiple mRNA targets, as the proposed cleavable designs will allow the efficient single-dose administration of different ON drugs simultaneously.


Subject(s)
Cell Proliferation , Oligonucleotides, Antisense , Ribonuclease H , Ribonuclease H/metabolism , Ribonuclease H/antagonists & inhibitors , Humans , Cell Proliferation/drug effects , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Structure , Structure-Activity Relationship , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Escherichia coli/drug effects
5.
Poult Sci ; 103(8): 103874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833744

ABSTRACT

Mycoplasma synoviae (MS) is a contagious pathogen that poses a significant threat to the poultry industry. Detection plays an important role in the prevention and control of MS, particularly in differentiating between wild-type MS and live attenuated vaccine strains for vaccination selection and culling of animals with wild-type only. The live attenuated ts+ vaccine strain MS-H is recognized as the most effective and widely used vaccine. In this study, we have developed a method called double enzyme-activated differentiation probes PCR (DEA-probes PCR) for the differentiation of MS-H vaccine strain from wild-type strain by targeting the single nucleotide polymorphism (SNP) of the 367th nucleotide in the Obg gene sequence. We developed 2 modified probes with the ribonucleotide insert. When the probe perfectly complements with the target, the ribonuclease H2 (RNase H2) will cleave the ribonucleotide, resulting in the generation of fluorescent signal. With a detection limit of 5.8 copies/µL, the DEA-probes PCR method demonstrates 100% specificity in distinguishing wild-type MS from MS-H strains in 1 h. The method demonstrated great performance in real application of 100 superior palate cleft swab samples from chickens in poultry farms. Twenty-eight samples were detected as MS positive, consistent with the results of the Chinese industry standard method. Additionally, our method was able to distinguish 19 wild-type MS strains from 9 MS-H vaccine strains. The DEA-probes PCR method is rapid, specific and sensitive for SNP detection, overcoming the misidentification in MS detection and differentiation. It can be also applied to the differentiation of infected from vaccinated animals (DIVA) for other pathogens.


Subject(s)
Bacterial Vaccines , Chickens , Mycoplasma Infections , Mycoplasma synoviae , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Poultry Diseases , Mycoplasma synoviae/genetics , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Poultry Diseases/prevention & control , Animals , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Mycoplasma Infections/prevention & control , Mycoplasma Infections/diagnosis , Vaccines, Attenuated , Sensitivity and Specificity
6.
Biomaterials ; 309: 122604, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733658

ABSTRACT

Rationally-engineered functional biomaterials offer the opportunity to interface with complex biology in a predictive, precise, yet dynamic way to reprogram their behaviour and correct shortcomings. Success here may lead to a desired therapeutic effect against life-threatening diseases, such as cancer. Here, we engineered "Crab"-like artificial ribonucleases through coupling of peptide and nucleic acid building blocks, capable of operating alongside and synergistically with intracellular enzymes (RNase H and AGO2) for potent destruction of oncogenic microRNAs. "Crab"-like configuration of two catalytic peptides ("pincers") flanking the recognition oligonucleotide was instrumental here in providing increased catalytic turnover, leading to ≈30-fold decrease in miRNA half-life as compared with that for "single-pincer" conjugates. Dynamic modeling of miRNA cleavage illustrated how such design enabled "Crabs" to drive catalytic turnover through simultaneous attacks at different locations of the RNA-DNA heteroduplex, presumably by producing smaller cleavage products and by providing toeholds for competitive displacement by intact miRNA strands. miRNA cleavage at the 5'-site, spreading further into double-stranded region, likely provided a synergy for RNase H1 through demolition of its loading region, thus facilitating enzyme turnover. Such synergy was critical for sustaining persistent disposal of continually-emerging oncogenic miRNAs. A single exposure to the best structural variant (Crab-p-21) prior to transplantation into mice suppressed their malignant properties and reduced primary tumor volume (by 85 %) in MCF-7 murine xenograft models.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Female , Mice , Cell Line, Tumor , Ribonuclease H/metabolism , Argonaute Proteins/metabolism , Mice, Nude , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Ribonucleases/metabolism
7.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731613

ABSTRACT

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Subject(s)
Anti-HIV Agents , Molecular Docking Simulation , Pyrimidines , Quantitative Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Humans , Molecular Dynamics Simulation , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Drug Design , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Molecular Structure
8.
Bioorg Chem ; 148: 107495, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805850

ABSTRACT

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Subject(s)
Drug Design , HIV-1 , Molecular Docking Simulation , Pyrimidines , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , HIV-1/drug effects , HIV-1/enzymology , Humans , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Molecular Structure , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Ribonuclease H/antagonists & inhibitors , Ribonuclease H/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Ribonuclease H, Human Immunodeficiency Virus/metabolism
9.
J Biomed Sci ; 31(1): 34, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561844

ABSTRACT

BACKGROUND: It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. METHODS: HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. RESULTS: Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of "bipolar distribution" of phosphorylated HBc and a de-P HBc doublet. CONCLUSIONS: It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.


Subject(s)
Capsid , Hepatitis B virus , Hepatitis B virus/genetics , Capsid/metabolism , Virus Assembly/genetics , DNA, Viral , RNA, Viral/metabolism , Capsid Proteins/metabolism , Virus Replication/genetics , Ribonuclease H/metabolism , Phosphoric Monoester Hydrolases/metabolism
10.
Curr Protoc ; 4(4): e1037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38666626

ABSTRACT

R-loops are nucleic acid structures composed of a DNA:RNA hybrid with a displaced non-template single-stranded DNA. Current approaches to identify and map R-loop formation across the genome employ either an antibody targeted against R-loops (S9.6) or a catalytically inactivated form of RNase H1 (dRNH1), a nuclease that can bind and resolve DNA:RNA hybrids via RNA exonuclease activity. This overview article outlines several ways to map R-loops using either methodology, explaining the differences and similarities among the approaches. Bioinformatic analysis of R-loops involves several layers of quality control and processing before visualizing the data. This article provides resources and tools that can be used to accurately process R-loop mapping data and explains the advantages and disadvantages of the resources as compared to one another. © 2024 Wiley Periodicals LLC.


Subject(s)
R-Loop Structures , Ribonuclease H , Ribonuclease H/metabolism , Ribonuclease H/chemistry , Computational Biology/methods , DNA/chemistry , RNA/chemistry , RNA/metabolism , RNA/genetics , Humans
11.
Biosens Bioelectron ; 253: 116174, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38432074

ABSTRACT

We herein present a novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction. The detection probe employed as a key component in this technique serves as a substrate for RNase H and triggers the PS-THSP reaction upon the RNase H-mediated degradation of the probe. As a consequence, a large number of long concatemeric amplification products could be produced and used to identify the RNase H activity through the fluorescence signals produced by the nucleic acid-specific fluorescent dye, SYTO 9. Importantly, the use of the gp32 protein allowed the PS-THSP reaction to be performed at 37 °C, ultimately enabling an isothermal one-step RNase H assay. Based on this sophisticated design principle, the RNase H activity was very sensitively detected, down to 0.000237 U mL-1 with high specificity. We further verified its practical applicability through its successful application to the screening of RNase H inhibitors. With its operational convenience and excellent analytical performance, this technique could serve as a new platform for RNase H assay in a wide range of biological applications.


Subject(s)
Biosensing Techniques , Nucleic Acids , Ribonuclease H , Biosensing Techniques/methods , Fluorescent Dyes
12.
RNA ; 30(3): 308-324, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38190635

ABSTRACT

m6A has different stoichiometry at different positions in different mRNAs. However, the exact stoichiometry of m6A is difficult to measure. Here, we describe SCARPET (site-specific cleavage and radioactive-labeling followed by purification, exonuclease digestion, and thin-layer chromatography), a simple and streamlined biochemical assay for quantifying m6A at any specific site in any mRNA. SCARPET involves a site-specific cleavage of mRNA immediately 5' of an adenosine site in an mRNA. This site is radiolabeled with 32P, and after a series of steps to purify the RNA and to remove nonspecific signals, the nucleotide is resolved by TLC to visualize A and m6A at this site. Quantification of these spots reveals the m6A stoichiometry at the site of interest. SCARPET can be applied to poly(A)-enriched RNA, or preferably purified mRNA, which produces more accurate m6A stoichiometry measurements. We show that sample processing steps of SCARPET can be performed in a single day, and results in a specific and accurate measurement of m6A stoichiometry at specific sites in mRNA. Using SCARPET, we measure exact m6A stoichiometries in specific mRNAs and show that Zika genomic RNA lacks m6A at previously mapped sites. SCARPET will be useful for testing specific sites for their m6A stoichiometry and to assess how m6A stoichiometry changes in different conditions and cellular contexts.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Adenosine/genetics , RNA , RNA, Messenger/metabolism , Nucleotides , RNA Processing, Post-Transcriptional , Zika Virus/genetics
13.
Methods Mol Biol ; 2723: 93-111, 2024.
Article in English | MEDLINE | ID: mdl-37824066

ABSTRACT

The poly-adenosine, or poly(A) tail, plays key roles in controlling the stability and translation of messenger RNAs in all eukaryotes, and, as such, facile assays that can measure poly(A) length are needed. This chapter describes an approach that couples RNase H-mediated cleavage of an RNA of interest with high-resolution denaturing gel electrophoresis and northern blot-based detection. Major advantages of this method include the ability to directly measure the abundance of any RNA and the length of its poly(A) tail without amplification steps. The assay provides high specificity, sensitivity, and reproducibility for accurate quantitation using standard molecular biology equipment and reagents. Overall, the high-resolution northern blotting approach offers a cost-effective means of poly(A) RNA analysis that is especially useful for small numbers of transcripts and comparisons between experimental conditions or time points.


Subject(s)
RNA , Ribonuclease H , Blotting, Northern , Reproducibility of Results , RNA/genetics , RNA, Messenger/genetics , Poly A/genetics
14.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138982

ABSTRACT

Antisense oligodeoxynucleotides (ASOs) have long been used to selectively inhibit or modulate gene expression at the RNA level, and some ASOs are approved for clinical use. However, the practicability of antisense technologies remains limited by the difficulty of reliably predicting the sites accessible to ASOs in complex folded RNAs. Recently, we applied a plant-based method that reproduces RNA-induced RNA silencing in vitro to reliably identify sites in target RNAs that are accessible to small interfering RNA (siRNA)-guided Argonaute endonucleases. Here, we show that this method is also suitable for identifying ASOs that are effective in DNA-induced RNA silencing by RNases H. We show that ASOs identified in this way that target a viral genome are comparably effective in protecting plants from infection as siRNAs with the corresponding sequence. The antiviral activity of the ASOs could be further enhanced by chemical modification. This led to two important conclusions: siRNAs and ASOs that can effectively knock down complex RNA molecules can be identified using the same approach, and ASOs optimized in this way could find application in crop protection. The technology developed here could be useful not only for effective RNA silencing in plants but also in other organisms.


Subject(s)
Antiviral Agents , RNA Interference , RNA, Small Interfering/metabolism , RNA, Messenger/genetics , Antiviral Agents/pharmacology
15.
J Biol Chem ; 299(12): 105431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926284

ABSTRACT

t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.


Subject(s)
Burkitt Lymphoma , G-Quadruplexes , Humans , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , DNA , Genes, myc , R-Loop Structures , Translocation, Genetic
16.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37855233

ABSTRACT

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Subject(s)
DNA Replication , RNA , Humans , RNA/genetics , Ribonucleases/genetics , DNA/metabolism , Hydroxyurea/pharmacology , Ribonuclease H/genetics , Ribonuclease H/metabolism
17.
J Bacteriol ; 205(10): e0028023, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37819120

ABSTRACT

Ribonucleotides frequently contaminate DNA and, if not removed, cause genomic instability. Consequently, all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids (RDHs). Escherichia coli lacking RNase HI (rnhA) and RNase HII (rnhB) enzymes, the ∆rnhA ∆rnhB double mutant, accumulates RDHs in its DNA. These RDHs can convert into RNA-containing DNA lesions (R-lesions) of unclear nature that compromise genomic stability. The ∆rnhAB double mutant has severe phenotypes, like growth inhibition, replication stress, sensitivity to ultraviolet radiation, SOS induction, increased chromosomal fragmentation, and defects in nucleoid organization. In this study, we found that RNase HI deficiency also alters wild-type levels of DNA supercoiling. Despite these severe chromosomal complications, ∆rnhAB double mutant survives, suggesting that dedicated pathways operate to avoid or repair R-lesions. To identify these pathways, we systematically searched for mutants synthetic lethal (colethal) with the rnhAB defect using an unbiased color screen and a candidate gene approach. We identified both novel and previously reported rnhAB-colethal and -coinhibited mutants, characterized them, and sorted them into avoidance or repair pathways. These mutants operate in various parts of nucleic acid metabolism, including replication fork progression, R-loop prevention and removal, nucleoid organization, tRNA modification, recombinational repair, and chromosome-dimer resolution, demonstrating the pleiotropic nature of RNase H deficiency. IMPORTANCE Ribonucleotides (rNs) are structurally very similar to deoxyribonucleotides. Consequently, rN contamination of DNA is common and pervasive across all domains of life. Failure to remove rNs from DNA has severe consequences, and all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids. RNase H deficiency leads to complications in bacteria, yeast, and mouse, and diseases like progressive external ophthalmoplegia (mitochondrial defects in RNASEH1) and Aicardi-Goutières syndrome (defects in RNASEH2) in humans. Escherichia coli ∆rnhAB mutant, deficient in RNases H, has severe chromosomal complications. Despite substantial problems, nearly half of the mutant population survives. We have identified novel and previously confirmed pathways in various parts of nucleic acid metabolism that ensure survival with RNase H deficiency.


Subject(s)
Escherichia coli , Ultraviolet Rays , Humans , Animals , Mice , Escherichia coli/metabolism , DNA/metabolism , Genomic Instability , Ribonuclease H/genetics , Ribonuclease H/metabolism , RNA/metabolism , Ribonucleotides/genetics , Ribonucleotides/metabolism
18.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834294

ABSTRACT

RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.


Subject(s)
Encephalitis Virus, Japanese , Oligonucleotides, Antisense , Animals , Chlorocebus aethiops , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/metabolism , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/metabolism , Ribonuclease H/metabolism , Vero Cells , RNA, Viral/genetics , Antiviral Agents/pharmacology
19.
Plants (Basel) ; 12(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687407

ABSTRACT

Although the temporary presence of ribonucleotides in DNA is normal, their persistence represents a form of DNA damage. Here, we assess such damage and damage defense to DNA in plastids and mitochondria of maize. Shoot development proceeds from meristematic, non-pigmented cells containing proplastids and promitochondria at the leaf base to non-dividing green cells in the leaf blade containing mature organelles. The organellar DNAs (orgDNAs) become fragmented during this transition. Previously, orgDNA damage and damage defense of two types, oxidative and glycation, was described in maize, and now a third type, ribonucleotide damage, is reported. We hypothesized that ribonucleotide damage changes during leaf development and could contribute to the demise of orgDNAs. The levels of ribonucleotides and R-loops in orgDNAs and of RNase H proteins in organelles were measured throughout leaf development and in leaves grown in light and dark conditions. The data reveal that ribonucleotide damage to orgDNAs increased by about 2- to 5-fold during normal maize development from basal meristem to green leaf and when leaves were grown in normal light conditions compared to in the dark. During this developmental transition, the levels of the major agent of defense, RNase H, declined. The decline in organellar genome integrity during maize development may be attributed to oxidative, glycation, and ribonucleotide damages that are not repaired.

20.
J Physiol ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772441

ABSTRACT

Epigenetic modifications can alter the function of genes. The epigenetics changes are caused by environmental effects, which lead to chemical modifications of the DNA or the chromatin. The mechanisms involve the influence of small interfering siRNAs on gene silencing. Epigenetic changes normally last only during the life-time of an individual and are erased in embryos and eggs for a naive progeny. The genomes are reprogrammed and the chemical modifications removed to restart the next generation. However, there are mechanisms that allow the genome to escape from such a clearing effect so that modifications can be transmitted to one or more subsequent generations. In the germline of animal cells small RNAs, including piRNAs, have evolved which guarantee a higher degree of fidelity for transmission of genetic information, guarding especially against the detrimental effect caused by transposon activity. piRNA is essential for transposon silencing for survival of a species and protection of subsequent generations. Inactivation of piRNA results in abundant transposon activity and sperm infertility. The effect in humans has been described but is less distinct. Some stress-induced epigenetic changes are transitory in mice and can be reversed by a change of environment or lifestyle.

SELECTION OF CITATIONS
SEARCH DETAIL