Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
1.
Immunity ; 57(10): 2269-2279, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383844

ABSTRACT

The immune system recognizes a multitude of innocuous antigens from food and intestinal commensal microbes toward which it orchestrates appropriate, non-inflammatory responses. This process requires antigen-presenting cells (APCs) that induce T cells with either regulatory or effector functions. Compromised APC function disrupts the T cell balance, leading to inflammation and dysbiosis. Although their precise identities continue to be debated, it has become clear that multiple APC lineages direct the differentiation of distinct microbiota-specific CD4+ T cell programs. Here, we review how unique APC subsets instruct T cell differentiation and function in response to microbiota and dietary antigens. These discoveries provide new opportunities to investigate T cell-APC regulatory networks controlling immune homeostasis and perturbations associated with inflammatory and allergic diseases.


Subject(s)
Antigen-Presenting Cells , Humans , Antigen-Presenting Cells/immunology , Animals , Cell Differentiation/immunology , Intestines/immunology , Homeostasis/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Inflammation/immunology , T-Lymphocytes/immunology
2.
Pharmacol Res ; 208: 107403, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39265668

ABSTRACT

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3 , Receptors, G-Protein-Coupled , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Male , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Drug Inverse Agonism , Th17 Cells/drug effects , Th17 Cells/immunology , Dextran Sulfate , Disease Models, Animal
3.
Antioxidants (Basel) ; 13(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39334738

ABSTRACT

Heat stress (HS) is a significant concern in broiler chickens, which is vital for global meat supply in the dynamic field of poultry farming. The impact of heat stress on the ileum and its influence on the redox homeostatic genes in chickens remains unclear. We hypothesized that adding zinc to the feed of heat-stressed broilers would improve their resilience to heat stress. However, this study aimed to explore the effects of organic zinc supplementation under HS conditions on broiler chickens' intestinal histology and regulation of HS index genes. In this study, 512 Xueshan chickens were divided into four groups: vehicle, HS, 60 mg/kg zinc, and HS + 60 mg/kg zinc groups. Findings revealed that zinc supply positively increased the VH and VH: CD in the ileum of the broilers compared to the HS group, while CD and VW decreased in Zn and HS+Zn supplemented broilers. Zn administration significantly increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and decreased the enzymatic activities of reactive oxygen species (ROS) and malondialdehyde (MDA) compared to the HS group. In addition, Zn administration significantly increased relative ATP, complex I, III, and V enzyme activity compared to the HS group. Furthermore, the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), lactate transporter 3 (LPCAT3), peroxiredoxin (PRX), and transferrin receptor (TFRC) in the protein levels was extremely downregulated in HS+Zn compared to the HS group. Zn supply significantly decreased the enrichment of RORγ, P300, and SRC1 at target loci of ACSL4, LPCAT3, and PRX compared to the HS group. The occupancies of histone active marks H3K9ac, H3K18ac, H3K27ac, H3K4me1, and H3K18bhb at the locus of ACSL4 and LPCAT3 were significantly decreased in HS+Zn compared to the HS group. Moreover, H3K9la and H3K18la at the locus of ACSL4 and LPCAT3 were significantly decreased in HS+Zn compared to the HS group. This study emphasizes that organic Zn is a potential strategy for modulating the oxidative genes ACSL4, LPCAT3, PRX, and TFRC in the ileum of chickens via nuclear receptor RORγ regulation and histone modifications.

4.
Immunol Rev ; 326(1): 219-226, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39285835

ABSTRACT

The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Immune Tolerance , T-Lymphocytes, Regulatory , Humans , Food Hypersensitivity/immunology , Animals , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Regulatory/immunology , Dysbiosis/immunology , Allergens/immunology
5.
Antiviral Res ; 231: 106008, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306285

ABSTRACT

Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.

6.
Int Immunopharmacol ; 140: 112884, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39133959

ABSTRACT

Multiple lines of evidence suggest that Retinoic Acid Related Orphan Nuclear Receptor gamma t (RORγt) is a potent therapeutic target for inflammatory bowel disease (IBD). However, systemic blockade of RORγt easily leads to thymic lymphoma and aberrant liver function. Therefore, the development of gut-limited RORγt antagonists may lead to the development of innovative IBD therapeutics that improve safety and retain effectiveness. We discovered SPH7854, a potent and selective RORγt antagonist. The effect of SPH7854 on the differentiation of T helper 1 (Th1)/Th17/regulatory T (Treg) cells was evaluated in mouse and human primary cells. SPH7854 (2-(4-(ethylsulfonyl)phenyl)-N- (6-(2-methyl-2-(pyridin-2-yl) propanoyl)pyridin-3-yl)acetamide) dose-dependently inhibited interleukin-17A (IL-17A) secretion from mouse CD4 + T cells and human peripheral blood mononuclear cells (PBMC). Additionally, SPH7854 strongly suppressed Th17 cell differentiation and considerably promoted Treg cell differentiation while slightly affected Th1 cell differentiation from mouse CD4 + T cells. The pharmacokinetic (PK) studies indicated that SPH7854 was restricted to the gut: the bioavailability and maximal plasma concentration of SPH7854 after oral administration (6 mg/kg) were 1.24 ± 0.33 % and 4.92 ± 11.81 nM, respectively, in rats. Strikingly, oral administration of SPH7854 (5 mg/kg and 15 mg/kg) twice daily significantly alleviated 2, 4, 6-trinitrobenzensulfonic acid (TNBS)-induced colitis in rats. SPH7854, especially at 15 mg/kg, significantly alleviated symptoms and improved macroscopic signs and microscopic structure in rat colitis, with decreased colonic mucosal levels of IL-17A, IL-6, tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (MCP-1) and myeloperoxidase (MPO). These evidences indicated that blockade of RORγt activity via a gut-limited antagonist may be an effective and safe therapeutic strategy for IBD treatment.


Subject(s)
Colitis , Nuclear Receptor Subfamily 1, Group F, Member 3 , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Humans , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Male , Rats , Mice , Th17 Cells/immunology , Th17 Cells/drug effects , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Cell Differentiation/drug effects , Disease Models, Animal , Interleukin-17/metabolism , Interleukin-17/antagonists & inhibitors , Acetamides/therapeutic use , Acetamides/pharmacology , Cells, Cultured , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Colon/drug effects , Colon/pathology , Colon/immunology , Mice, Inbred C57BL
7.
Inflamm Res ; 73(9): 1581-1599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39052064

ABSTRACT

OBJECTIVE AND DESIGN: The exact immunological mechanism of widespread chronic inflammatory skin disorder psoriasis has not been fully established. CD11b+Gr.1+ myeloid-derived cells are immature heterogeneous cells with T-cell suppressive property in neoplasia; however, influence of these cells on adaptive immunity is highly contextual; therefore, we dubbed these cells as myeloid-derived adjuster cells (MDAC). We studied imiquimod induced psoriasis in mouse model and evaluated for the first time the RORγt-NFAT1 axis in MDACs and the function, differentiation and interaction of these cells with T cells. MATERIALS AND METHODS: The status of T cells and MDACs; their functionality and differentiation properties, and the roles of RORγt and NFAT1 in MDACs were evaluated using flow cytometry, qRT-PCR and confocal imaging. RESULTS: We found gradual increase in T cells and MDACs and an increase in the number of IL17 -secreting MDACs and T cells in the skin of psoriatic animals. We also noted that MDAC differentiation is biased toward M1 macrophages and DCs which perpetuate inflammation. We found that psoriatic MDACs were unable to suppress T-cell proliferation or activation but seemingly helped these T cells produce more IL17. Inhibition of the RORγt/NFAT1 axis in MDACs increased the suppressive nature of MDACs, allowing these cells to suppress the activity of psoriatic T-cells. CONCLUSION: Our results indicate that altered MDAC properties in psoriatic condition sustains pathological inflammation and RORγt and NFAT1 as promising intervention target for psoriasis management.


Subject(s)
CD11b Antigen , Cell Differentiation , Imiquimod , Interleukin-17 , NFATC Transcription Factors , Nuclear Receptor Subfamily 1, Group F, Member 3 , Psoriasis , Animals , Mice , Antigens, Ly , CD11b Antigen/metabolism , Cell Differentiation/drug effects , Inflammation/chemically induced , Interleukin-17/metabolism , Mice, Inbred BALB C , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myeloid Cells/immunology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Phenotype , Psoriasis/chemically induced , Psoriasis/immunology , Skin/pathology , Skin/immunology , Skin/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Male
8.
Arch Biochem Biophys ; 759: 110085, 2024 09.
Article in English | MEDLINE | ID: mdl-38971421

ABSTRACT

Cardiac glycosides, derived from plants and animals, have been recognized since ancient times. These substances hinder the function of the sodium-potassium pump within eukaryotic cells. Many reports have shown that these compounds influence the activity of nuclear receptors. Thus, we assessed the effects of various cardiac glycosides at nontoxic concentrations on RORγ and RORγT. RORγT is a crucial protein involved in the differentiation of Th17 lymphocytes. Sixteen analyzed cardiac glycosides exhibited varying toxicities in HepG2 cells, all of which demonstrated agonistic effects on RORγ, as confirmed in the RORγ-HepG2 reporter cell line. The overexpression of both the RORγ and RORγT isoforms intensified the effects of these compounds. Additionally, these glycosides induced the expression of G6PC, a gene regulated by RORγ, in HepG2 cells. Subsequently, the effects of two endogenous cardiac glycosides (marinobufagenin and ouabain) and the three most potent glycosides (bufalin, oleandrin, and telecinobufagenin) were evaluated in Th17 primary lymphocytes. All of these compounds increased the expression of the IL17A, IL17F, IFNG, and CXCL10 genes, but they exhibited varying effects on GZMB and CCL20 expression. Molecular docking analysis revealed the robust binding affinity of cardiac glycosides for the ligand binding domain of the RORγ/RORγT receptors. Thus, we demonstrated that at nontoxic concentrations, cardiac glycosides have agonistic effects on RORγ/RORγT nuclear receptors, augmenting their activity. This potential can be harnessed to modulate the phenotype of IL17-expressing cells (e.g., Th17 or Tc17 lymphocytes) in adoptive therapy for combating various types of cancer.


Subject(s)
Cardiac Glycosides , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3 , Th17 Cells , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Hep G2 Cells , Cardiac Glycosides/pharmacology , Cardiac Glycosides/chemistry , Th17 Cells/metabolism , Th17 Cells/drug effects , Th17 Cells/immunology
9.
Antioxidants (Basel) ; 13(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39061887

ABSTRACT

Asthma is a heterogeneous disease that can be broadly classified into type 2, which is primarily steroid-sensitive and eosinophilic, and non-type 2, which is primarily steroid-resistant and neutrophilic. While the mechanisms leading to the development of molecular-targeted therapies for type 2 asthma are being elucidated, much remains to be learned about non-type 2 asthma. To investigate the role of oxidative stress in refractory allergic airway inflammation, we compared asthma models generated by immunizing wild-type and nuclear factor erythroid-2-related factor 2 (Nrf2)-deficient mice with the house dust mite antigen. Both asthma models had similar levels of airway inflammation and hyperresponsiveness, but the Nrf2-deficient mice had increased oxidative stress and exacerbated neutrophilic airway inflammation compared with the wild-type mice. Type 2 cytokines and the expression of GATA3, a transcription factor that is important for Th2 cell differentiation, had decreased in Nrf2-deficient mice compared with the wild-type mice, whereas helper T (Th) 17 cytokines and the expression of RORγt, which is important for Th17 cell differentiation, had increased. Furthermore, the neutrophilic airway inflammation caused by Nrf2 deficiency was ameliorated by interleukin (IL)-17 neutralization. We have concluded that the disruption of the Nrf2-mediated antioxidant defense system contributed to the induction of Th17 differentiation and exacerbated allergic neutrophilic airway inflammation.

10.
J Autoimmun ; 147: 103262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833897

ABSTRACT

Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , NIMA-Interacting Peptidylprolyl Isomerase , Nuclear Receptor Subfamily 1, Group F, Member 3 , Th17 Cells , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Humans , Multiple Sclerosis/immunology , STAT3 Transcription Factor/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Female
11.
Acta Pharmacol Sin ; 45(9): 1964-1977, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38698214

ABSTRACT

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Nuclear Receptor Subfamily 1, Group F, Member 3 , Prostatic Neoplasms , Quinolines , Male , Animals , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Drug Inverse Agonism , Mice , Mice, Nude , Drug Discovery , Xenograft Model Antitumor Assays , Mice, Inbred BALB C
12.
Dev Cell ; 59(14): 1809-1823.e6, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38723629

ABSTRACT

In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3ß1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.


Subject(s)
GATA3 Transcription Factor , Hair Follicle , Immunity, Innate , Lymphocytes , Skin , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Hair Follicle/metabolism , Mice , Lymphocytes/metabolism , Lymphocytes/immunology , Skin/metabolism , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Cell Differentiation
13.
Ren Fail ; 46(1): 2338932, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38616174

ABSTRACT

PURPOSE: This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS: USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS: USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION: USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.


Subject(s)
Autoantibodies , Glomerulonephritis , Nephritis , Animals , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3 , Th17 Cells , Feedback , Cell Differentiation
14.
Adv Exp Med Biol ; 1444: 33-49, 2024.
Article in English | MEDLINE | ID: mdl-38467971

ABSTRACT

Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.


Subject(s)
Gene Expression Regulation , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Thymus Gland , Autoimmunity , Antigens , Epithelial Cells/metabolism
15.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38310356

ABSTRACT

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Sorafenib , Collagen/metabolism , Tumor Microenvironment
16.
Gut Microbes ; 16(1): 2315631, 2024.
Article in English | MEDLINE | ID: mdl-38385162

ABSTRACT

Immune checkpoint inhibitors (ICI) have been positioned as a standard of care for patients with advanced non-small-cell lung carcinomas (NSCLC). A pilot clinical trial has reflected optimistic association between supplementation with Clostridium butyricum MIYAIRI 588 (CBM588) and ICI efficacy in NSCLC. However, it remains to be established whether this biotherapeutic strain may be sufficient to heighten the immunogenicity of the tumor draining lymph nodes to overcome resistance to ICI. Herein, we report that supplementation with CBM588 led to an improved responsiveness to antibody targeting programmed cell death protein 1 (aPD-1). This was statistically associated with a significant decrease in α-diversity of gut microbiota from CBM588-treated mice upon PD-1 blockade. At the level of the tumor-draining lymph node, such combination of treatment significantly lowered the frequency of microbiota-modulated subset of regulatory T cells that express Retinoic Orphan Receptor gamma t (Rorγt+ Treg). Specifically, this strongly immunosuppressive was negatively correlated with the abundance of bacteria that belong to the family of Ruminococcaceae. Accordingly, the colonic expression of both indoleamine 2,3-Dioxygenase 1 (IDO-1) and interleukin-10 (IL-10) were heightened in mice with greater PD-1 blockade efficacy. The CBM588-induced ability to secrete Interleukin-10 of lamina propria mononuclear cells was heightened in tumor bearers when compared with cancer-free mice. Conversely, blockade of interleukin-10 signaling preferentially enhanced the capacity of CD8+ T cells to secrete Interferon gamma when being cocultured with CBM588-primed lamina propria mononuclear cells of tumor-bearing mice. Our results demonstrate that CBM588-centered intervention can adequately improve intestinal homeostasis and efficiently overcome resistance to PD-1 blockade in mice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Clostridium butyricum , Gastrointestinal Microbiome , Lung Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Clostridium butyricum/physiology , Interleukin-10/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3 , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory
17.
Clin Pharmacol Drug Dev ; 13(7): 801-809, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38410874

ABSTRACT

Cedirogant is an inverse agonist of retinoic acid-related orphan receptor gamma, thymus (RORγt) developed for treatment of psoriasis. This study aimed to characterize pharmacokinetics, pharmacodynamics, safety, and tolerability of cedirogant following a single oral dose in Japanese participants and multiple oral doses in Japanese and Chinese participants. The single doses evaluated in healthy Japanese participants were 75, 225, and 395 mg. The multiple doses evaluated in both healthy Japanese and Chinese participants was 375 mg once daily for 14 days. Cedirogant plasma exposure increased dose proportionally with administration of single doses. Maximum cedirogant plasma concentration was reached within a median time of 4-5 hours after dosing. The harmonic mean elimination half-life ranged from 19 to 25 hours. Cedirogant pharmacokinetics were similar between Japanese and Chinese participants. Compared with healthy Western participants in a cross-study analysis, steady-state cedirogant plasma exposure was 38%-73% higher in Japanese or Chinese participants. Ex vivo interleukin-17 inhibition increased in a dose-dependent manner and was maximized by 375 mg once-daily doses. The cedirogant regimens tested were generally well tolerated, and no new safety issues were identified. The results supported enrollment of Japanese and Chinese subjects in subsequent clinical trials for cedirogant.


Subject(s)
Dose-Response Relationship, Drug , Retinoic Acid Receptor gamma , Adult , Female , Humans , Male , Middle Aged , Young Adult , Administration, Oral , China , Cross-Over Studies , East Asian People , Half-Life , Healthy Volunteers , Interleukin-17/antagonists & inhibitors , Japan , Retinoic Acid Receptor gamma/antagonists & inhibitors
18.
Hum Immunol ; 85(1): 110748, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177009

ABSTRACT

AIM: Periampullary adenocarcinoma (PAC) is a malignant tumor originating at the ampulla of Vater, distal common bile duct, head of the pancreas, ampulla and duodenum. The levels of circulating Th17 cells and Th17-related cytokines in patients with PAC remain unreported. Therefore, the aim of this study was to determine the levels of circulating Th17 cells and Th17-related cytokines in patients with PAC. MATERIALS AND METHODS: Flow cytometry was used to measure Th17 cell proportions in PBMCs from 60 PAC patients and 30 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-17A and IL-23 levels in serum samples, while quantitative reverse transcription polymerase chain reaction (qRT-PCR) assessed IL-17A mRNA expression and Th17-related transcription factors (RORγt and STAT3) in tissue samples. RESULTS: The findings showed a substantial increase in Th17 cell percentages, elevated concentrations of IL-17A and IL-23, and higher mRNA expression levels of IL-17A, RORγt, and STAT3 in patients with PAC when compared to healthy controls (HCs). CONCLUSION: Th17 cells play an important role in the pathogenesis of PAC and may represent potential therapeutic targets.


Subject(s)
Adenocarcinoma , Cytokines , Humans , Cytokines/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Th17 Cells/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Interleukin-23/metabolism , RNA, Messenger/genetics
19.
Toxicol In Vitro ; 96: 105782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244730

ABSTRACT

Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18ß-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18ß-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18ß-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18ß-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18ß-GA, and 18ß-GA as an alternative treatment for EE-induced cholestasis.


Subject(s)
Cholestasis , Glycyrrhetinic Acid , Natural Killer T-Cells , Receptors, CXCR3 , Ursodeoxycholic Acid , Cholestasis/chemically induced , Cholestasis/drug therapy , Ethinyl Estradiol/toxicity , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Signal Transduction , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Animals , Mice
20.
Biomolecules ; 14(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38254689

ABSTRACT

Oral tolerance has been defined as the specific suppression of immune responses to an antigen by prior oral administration of the antigen. It has been thought to serve to suppress food allergy. Previous studies have shown that dendritic cells (DCs) and regulatory T cells (Tregs) are involved in the induction of oral tolerance. However, the detailed mechanisms of Treg induction in oral tolerance remain largely unknown. Eosinophils have been recognized as effector cells in allergic diseases, but in recent years, the diverse functions of tissue-resident eosinophils have been reported. Eosinophils in the intestine have been reported to induce Tregs by releasing TGF-ß, but the role of eosinophils in oral tolerance is still controversial. In this study, we analyzed the roles of eosinophils in oral tolerance using eosinophil-deficient ΔdblGATA mice (mice lacking a high-affinity GATA-binding site in the GATA1 promoter). ΔdblGATA mice showed impaired antigen-induced oral tolerance compared to wild-type mice. The induction of RORγt+ Tregs in mesenteric lymph nodes (MLNs) by oral tolerance induction was impaired in ΔdblGATA mice compared to wild-type mice. An increase in RORγt+ antigen-presenting cells (APCs), which are involved in RORγt+ Treg differentiation, in the intestine and MLNs was not seen in ΔdblGATA mice. Notably, the expansion of group 3 innate lymphoid cells (ILC3s), a subset of RORγt+ APCs, by oral tolerance induction was seen in wild-type mice but not ΔdblGATA mice. These results suggest that eosinophils are crucial in the induction of oral tolerance, possibly via the induction of RORγt+ APCs and RORγt+ Tregs.


Subject(s)
Eosinophils , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , T-Lymphocytes, Regulatory , Immunity, Innate , Lymphocytes , Antigen-Presenting Cells
SELECTION OF CITATIONS
SEARCH DETAIL