Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
eNeuro ; 11(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38969501

ABSTRACT

Cognitive dysfunction is associated with methamphetamine use disorder (MUD). Here, we used genetic and pharmacological approaches to examine the involvement of either Group 2 metabotropic glutamate (mGlu2) or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 d followed by 7 d of withdrawal) caused an impaired performance in the novel object recognition test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the Type 3 activator of G-protein signaling (AGS3), Rab3A, and the vesicular glutamate transporter, vGlut1, in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice. These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by MUD.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Mice, Inbred C57BL , Mice, Knockout , Receptors, Metabotropic Glutamate , Recognition, Psychology , Animals , Methamphetamine/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Male , Central Nervous System Stimulants/pharmacology , Memory Disorders/metabolism , Mice , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
2.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071374

ABSTRACT

Following prolonged activity blockade, amplitudes of miniature excitatory postsynaptic currents (mEPSCs) increase, a form of plasticity termed "homeostatic synaptic plasticity." We previously showed that a presynaptic protein, the small GTPase Rab3A, is required for full expression of the increase in miniature endplate current amplitudes following prolonged blockade of action potential activity at the mouse neuromuscular junction in vivo (Wang et al., 2011), but it is unknown whether this form of Rab3A-dependent homeostatic plasticity shares any characteristics with central synapses. We show here that homeostatic synaptic plasticity of mEPSCs is impaired in mouse cortical neuron cultures prepared from Rab3A-/- and mutant mice expressing a single point mutation of Rab3A, Rab3A Earlybird mice. To determine if Rab3A is involved in the well-established homeostatic increase in postsynaptic AMPA-type receptors (AMPARs), we performed a series of experiments in which electrophysiological recordings of mEPSCs and confocal imaging of synaptic AMPAR immunofluorescence were assessed within the same cultures. We found that Rab3A was required for the increase in synaptic AMPARs following prolonged activity blockade, but the increase in mEPSC amplitudes was not always accompanied by an increase in postsynaptic AMPAR levels, suggesting other factors may contribute. Finally, we demonstrate that Rab3A is acting in neurons because only selective loss of Rab3A in neurons, not glia, disrupted the homeostatic increase in mEPSC amplitudes. This is the first demonstration that neuronal Rab3A is required for homeostatic synaptic plasticity and that it does so partially through regulation of the surface expression of AMPA receptors.

3.
Biochem Biophys Res Commun ; 723: 150199, 2024 09 03.
Article in English | MEDLINE | ID: mdl-38824807

ABSTRACT

Rab3A is a member of the Rab GTPase family involved in synaptic vesicle trafficking. Recent evidence has demonstrated that Rab3A is phosphorylated by leucine-rich repeat kinase 2 (LRRK2) that is implicated in both familial and sporadic forms of Parkinson's disease (PD), and an abnormal increase in Rab3A phosphorylation has been proposed as a cause of PD. Despite the potential importance of Rab3A in PD pathogenesis, its structural information is limited and the effects of bound nucleotides on its biophysical and biochemical properties remain unclear. Here, we show that GDP-bound Rab3A is preferentially phosphorylated by LRRK2 compared with GTP-bound Rab3A. The secondary structure of Rab3A, measured by circular dichroism (CD) spectroscopy, revealed that Rab3A is resistant to heat-induced denaturation at pH 7.4 or 9.0 regardless of the nucleotides bound. In contrast, Rab3A underwent heat-induced denaturation at pH 5.0 at a lower temperature in its GDP-bound form than in its GTP-bound form. The unfolding temperature of Rab3A was studied by differential scanning fluorimetry, which showed a significantly higher unfolding temperature in GTP-bound Rab3A than in GDP-bound Rab3A, with the highest at pH 7.4. These results suggest that Rab3A has unusual thermal stability under physiologically relevant conditions and that bound nucleotides influence both thermal stability and phosphorylation by LRRK2.


Subject(s)
Guanosine Diphosphate , Guanosine Triphosphate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Protein Structure, Secondary , rab3A GTP-Binding Protein , Phosphorylation , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , rab3A GTP-Binding Protein/metabolism , rab3A GTP-Binding Protein/chemistry , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/chemistry , Protein Stability
4.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421874

ABSTRACT

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Subject(s)
Insulinoma , Pancreatic Neoplasms , Humans , Insulin/metabolism , Proteomics , Lipidomics , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Exocytosis , Secretory Vesicles/metabolism , Cytoplasmic Granules/metabolism
5.
Brain Res Bull ; 208: 110884, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253132

ABSTRACT

BACKGROUND: Rab3a regulates vesicle secretion and transport. Emerging evidences have shown that extracellular vesicles (EVs) can reach target lesions of injured spinal cords and exert a positive effect on these lesions. However, the molecular mechanism by which Rab3a regulates vesicle secretion to ameliorate spinal cord injury (SCI) is not fully understood. METHODS: An SCI rat model was established which was used to examine the pathological changes and Rab3a expression in spinal cord tissue. Rab3a was overexpressed in the model rats to demonstrate its effect on SCI repair. Rab3a was also knocked down in neuronal cells to verify its role in vesicle secretion and neuronal cells. The binding protein of Rab3a was identified by Co-IP and mass spectrometry. RESULTS: Rab3a was significantly downregulated in SCI rats and Rab3a overexpression promoted SCI repair. Rab3a knockdown inhibited the secretion of neuronal cell-derived EVs. Compared to the EVs from the equal number of control neuronal cells, EVs from Rab3a-knockdown neuronal cells promoted M1 macrophage polarization, which in turn, promoted neuronal cell apoptosis. Mechanistically, STXBP1 was identified as a binding protein of Rab3a, and their interaction promoted the secretion of neuronal cell-derived EVs. Furthermore, METTL2b was significantly downregulated in SCI rats, and METTL2b knockdown significantly reduced Rab3a protein expression. CONCLUSION: These results suggest that Rab3a promotes the secretion of neuronal cell-derived EVs by interacting with its binding protein STXBP1. Neuronal cells-derived EVs inhibited the polarization of M1 macrophages in the spinal cord microenvironment, thereby promoting SCI repair. Our findings provide a theoretical basis for the clinical treatment of SCI.


Subject(s)
Spinal Cord Injuries , Animals , Rats , Macrophages/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
6.
FEBS Lett ; 597(21): 2626-2642, 2023 11.
Article in English | MEDLINE | ID: mdl-37715941

ABSTRACT

Both bombesin receptor-activated protein (BRAP) and its mouse homolog have been found to be expressed in bronchial epithelia but with unclear functions. Using electron microscopy combined with histological assays, we found that BRAP homolog deficiency in mice led to abnormal tracheal cilia. Rab-3A-interacting protein (Rabin8), a protein that might play a role in cilia development, was screened by yeast two-hybrid and further verified to have interaction with human BRAP by co-immunoprecipitation and pulldown assays. The expression levels of Rabin8, together with acetylated α-tubulin, a marker of cilia, were either downregulated by knockdown of BRAP or upregulated by overexpression of BRAP in cultured immortalized human bronchial epithelial cells. These results reveal a role for BRAP in airway cilia formation.


Subject(s)
Cilia , Receptors, Bombesin , Animals , Humans , Mice , Carrier Proteins/metabolism , Cilia/genetics , Cilia/metabolism , Mice, Knockout , Proteins/metabolism , Receptors, Bombesin/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Open Med (Wars) ; 18(1): 20230740, 2023.
Article in English | MEDLINE | ID: mdl-37465347

ABSTRACT

The goal of this study was to demonstrate the functions and specific mechanism of long non-coding RNA (lncRNA) GNAS-AS1 in lung adenocarcinoma. Levels of lncRNA GNAS-AS1, microRNA (miR)-433-3p, and Rab3A were assessed by quantitative real-time PCR (qRT-PCR). The target-binding sites of lncRNA GNAS-AS1, miR-433-3p, and Rab3A were predicted and confirmed by bioinformatics tool (StarBase) and a dual-luciferase reporter system. Cell proliferation and apoptosis were checked using MTT and flow cytometry, respectively. Additionally, the levels of apoptosis-related and epithelial-mesenchymal transition (EMT)-associated genes in A549 cells were analyzed by qRT-PCR and western blot. We found that lncRNA GNAS-AS1 was upregulated, miR-433-3p was low-expressed, and Rab3A was overexpressed in lung adenocarcinoma tissues and cell lines. LncRNA GNAS-AS1 interacted with miR-433-3p and negatively regulated miR-433-3p levels. Rab3A was a direct target of miR-433-3p. Downregulation of lncRNA GNAS-AS1 remarkably suppressed cell proliferation, promoted cell apoptosis, decreased B-cell lymphoma-2 (Bcl-2) expression, enhanced the Bcl-2-Associated X (Bax) level, promoted E-cadherin expression, and reduced N-cadherin and Rab3A levels. However, the miR-433-3p inhibitor reversed all these findings. Similarly, the inhibitory effects of miR-433-3p mimic on A549 cells were reversed by the Rab3A-plasmid. In conclusion, lncRNA GNAS-AS1 downregulation suppressed lung adenocarcinoma cell proliferation and EMT through the miR-433-3p/Rab3A axis.

8.
Biology (Basel) ; 12(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37237503

ABSTRACT

Diabetic nephropathy is a major complication in diabetic patients. Podocytes undergo loss and detachment from the basal membrane. Intra- and intercellular communication through exosomes are key processes for maintaining function, and the Rab3A/Rab27A system is an important counterpart. Previously, we observed significant changes in the Rab3A/Rab27A system in podocytes under glucose overload, demonstrating its important role in podocyte injury. We investigated the implication of silencing the Rab3A/Rab27A system in high glucose-treated podocytes and analysed the effect on differentiation, apoptosis, cytoskeletal organisation, vesicle distribution, and microRNA expression in cells and exosomes. For this, we subjected podocytes to high glucose and transfection through siRNAs, and we isolated extracellular vesicles and performed western blotting, transmission electron microscopy, RT-qPCR, immunofluorescence and flow cytometry assays. We found that silencing RAB3A and RAB27A generally leads to a decrease in podocyte differentiation and cytoskeleton organization and an increase in apoptosis. Moreover, CD63-positive vesicles experienced a pattern distribution change. Under high glucose, Rab3A/Rab27A silencing ameliorates some of these detrimental processes, suggesting a differential influence depending on the presence or absence of cellular stress. We also observed substantial expression changes in miRNAs that were relevant in diabetic nephropathy upon silencing and glucose treatment. Our findings highlight the Rab3A/Rab27A system as a key participant in podocyte injury and vesicular traffic regulation in diabetic nephropathy.

9.
Biochem Biophys Res Commun ; 643: 77-87, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36587525

ABSTRACT

Investigating novel mechanisms of neurite outgrowth via cytoskeleton is critical for developing therapeutic strategies against neural disorders. Rab3A is a vesicle-related protein distributed throughout the nervous system, but the detailed mechanism related to cytoskeleton remains largely unknown. Our previous reports show that spastin serves microtubule to regulate neurite outgrowth. Here, we asked whether Rab3A could function via modulating spastin during neuronal development. The results revealed that Rab3A colocalized with spastin in cultured hippocampal neurons. Immunoprecipitation assays showed that Rab3A physically interacted with spastin in rat brain lysates. Rab3A overexpression significantly induced spastin degradation; this effect was reversed by leupeptin- or MG-132- administration, suggesting the lysosomal and ubiquitin-mediated degradation system. Immunofluorescence staining further confirmed that Rab3A and spastin immune-colocalized with the lysosome marker lysotracker. In COS7 cells, Rab3A overexpression significantly downregulated spastin expression and abolished the spastin-mediated microtubule severing. Furthermore, overexpression inhibited while genetic knockdown of Rab3A promoted neurite outgrowth. However, this inhibitory effect on neurite outgrowth in hippocampal neurons could be reversed via co-transfection of spastin, indicating that Rab3A functions via its interaction protein spastin. In general, our data identify an interaction between Rab3A and spastin, and this interaction affects the protein stability of spastin and eliminates its microtubule severing function, thereby modulating neurite outgrowth.


Subject(s)
Adenosine Triphosphatases , Spastic Paraplegia, Hereditary , Animals , Rats , Adenosine Triphosphatases/metabolism , Neurites/metabolism , Neuronal Outgrowth , Neurons/metabolism , rab3A GTP-Binding Protein , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Spastin/metabolism , Spastin/pharmacology
10.
J Biol Chem ; 298(9): 102239, 2022 09.
Article in English | MEDLINE | ID: mdl-35809645

ABSTRACT

Alpha-synuclein (a-Syn) is a presynaptic protein, the misfolding of which is associated with Parkinson's disease. Rab GTPases are small guanine nucleotide binding proteins that play key roles in vesicle trafficking and have been associated with a-Syn function and dysfunction. a-Syn is enriched on synaptic vesicles, where it has been reported to interact with GTP-bound Rab3a, a master regulator of synaptic vesicle trafficking. a-Syn is known to bind weakly to Rab8a in solution via a positively charged patch, but the physiological implications of such interactions have not been explored. Here, we investigate direct interactions between a-Syn and Rab3a in solution and on lipid membranes using NMR spectroscopy. We find that the C terminus of a-Syn interacts with Rab3a in a manner similar to its previously reported interaction with Rab8a. While weak in solution, we demonstrate that this interaction becomes stronger when the proteins are bound to a membrane surface. The Rab3a binding site for a-Syn is similar to the surface that contacts the Rab3a effector rabphilin-3A, which modulates the enzymatic activity of Rab3a. Accordingly, we show that a-Syn inhibits GTP hydrolysis by Rab3a and that inhibition is more potent on the membrane surface, suggesting that their interaction may be functionally relevant. Finally, we show that phosphorylation of a-Syn residue Ser 129, a modification associated with Parkinson's disease pathology, enhances its interactions with Rab3a and increases its ability to inhibit Rab3a GTP hydrolysis. These results represent the first observation of a functional role for synuclein-Rab interactions and for a-Syn Ser 129 phosphorylation.


Subject(s)
Parkinson Disease , alpha-Synuclein , rab3A GTP-Binding Protein , Guanosine Triphosphate/metabolism , Humans , Lipids/chemistry , Parkinson Disease/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , rab3A GTP-Binding Protein/chemistry , rab3A GTP-Binding Protein/genetics , rab3A GTP-Binding Protein/metabolism
11.
Ophthalmic Genet ; 43(3): 409-412, 2022 06.
Article in English | MEDLINE | ID: mdl-35014575

ABSTRACT

BACKGROUND: Autosomal-dominant cone-rod dystrophy 7 (CORD7) has been documented in association with RIM1 mutation (c.2459 G>A). We report a patient with retinal dystrophy who was heterozygous for RIM1 missense variant with a newly found point mutation (c.4036 G>T). Clinical findings of this genetic variant manifested differently from a typical CORD7. In addition, astrocytic hamartomas at bilateral optic discs are also a unique feature, which has not been described in CORD previously. MATERIALS AND METHODS: Medical records of this patient were retrospectively reviewed. Genetic testing with whole exon sequencing was performed. RESULTS: This 43-year-old female with history of decreased night vision since childhood came to our hospital complaining of blurred vision in both eyes for more than half a year. Her best-corrected visual acuity was 20/200 in both eyes. Dilated fundoscopic examination revealed symmetric diffuse atrophy of retinal pigment epithelium with peripheral pigmentary clumps. Also, optic disc astrocytic hamartomas were found bilaterally. Optical coherence tomography revealed extensive disruption of inner segment/outer segment junction in both eyes. Visual field test showed severe peripheral defect sparing central vision. Electroretinogram demonstrated both rod and cone cells abnormalities. Subsequent genetic testing reported heterozygosity for the RIM1 (c.4036 G>T) mutation. CONCLUSIONS: This is the first reported case of RIM1 mutation-associated retinal dystrophy with a newly found point mutation (c.4036 G>T), which presented differently from a typical CORD7 and more similarly to the phenotype of RP. Furthermore, our finding of bilateral optic disc astrocytic hamartomas has not been reported in association with CORD previously.


Subject(s)
Hamartoma , Retinitis Pigmentosa , Child , Electroretinography , Female , Hamartoma/diagnosis , Hamartoma/genetics , Humans , Mutation , Phenotype , Retinitis Pigmentosa/genetics , Retrospective Studies , Tomography, Optical Coherence
12.
Small GTPases ; 13(1): 162-182, 2022 01.
Article in English | MEDLINE | ID: mdl-34180342

ABSTRACT

We recently identified a CD63-interacting protein to understand the role of CD63 in virion production of the human immunodeficiency virus type 1, and we have found that Rab3a forms a complex with CD63. In this study, we analysed the effect of Rab3a on virion production of the murine leukaemia virus (MLV), which is another member of the retrovirus family. We found that Rab3a silencing induced lysosomal degradation of the MLV Gag protein, and recovery of the Rab3a expression restored the level of the Gag protein through a complex formation of MLV Gag and Rab3a, indicating that Rab3a is required for MLV Gag protein expression. In contrast, CD63 silencing decreased the infectivity of released virions but had no effect on virion production, indicating that CD63 facilitates the infectivity of released MLV particles. Although Rab3a induced CD63 degradation in uninfected cells, the complex of MLV Gag and Rab3a suppressed the Rab3a-mediated CD63 degradation in MLV-infected cells. Finally, we found that the MLV Gag protein interacts with Rab3a to stabilize its own protein and CD63 that facilitates the infectivity of released MLV particles. Considering the involvement of Rab3a in lysosome trafficking to the plasma membrane, it may also induce cell surface transport of the MLV Gag protein.


Subject(s)
Gene Products, gag , Leukemia Virus, Murine , Mice , Animals , Humans , Gene Products, gag/metabolism , Leukemia Virus, Murine/metabolism , Virion/metabolism , Cell Membrane/metabolism , GTP-Binding Proteins/metabolism
13.
Mol Med Rep ; 25(2)2022 02.
Article in English | MEDLINE | ID: mdl-34935056

ABSTRACT

MicroRNA (miR)­126 is known to inhibit inflammatory responses in various inflammatory­related diseases, but its role during the cerebral ischemia/reperfusion (I/R) injury remains unknown. The present study aimed to examine the interaction between miR­126 and RAB3A interacting protein (RAB3IP), and explore its potential protective effects during I/R injury. The human neuroblastoma cell line SH­SY5Y was cultured in an oxygen­glucose deprivation/reoxygenation (OGD/R) environment to simulate I/R injury to assess miR­126 expression and cell viability. SH­SY5Y cells cultured in normal conditions were used as a negative control (NC) group. SH­SY5Y cells were transfected with a miR­126 mimic or an NC mimic, then cultured in OGD/R conditions; in rescue experiments, SH­SY5Y cells were co­transfected with RAB3IP overexpression or NC plasmid together with mimic­NC or mimic­miR, and then maintained in an OGD/R environment to evaluate miR­126, RAB3IP expression, cell viability and apoptosis. Cell viability was reduced in the Model group compared with the NC group, suggesting the successful construction of the OGD/R model. miR­126 expression was downregulated in the Model group compared with the NC group. However, following transfection with mimic­miR, cell viability increased compared with the mimic­NC group. Annexin V and PI staining and Hoechst/PI assays also indicated that apoptosis was reduced in the mimic­miR group compared with the mimic­NC group. RAB3IP expression was reduced following mimic­miR transfection. In rescue experiments, miR­126 negatively regulated RAB3IP expression; by contrast, RAB3IP did not affect that of miR­126. In addition, RAB3IP overexpression attenuated the protective effect of miR­126 on OGD/R­induced apoptosis. These findings suggest that miR­126 protects against cerebral I/R injury by targeting RAB3IP.


Subject(s)
Apoptosis , Cell Cycle , Guanine Nucleotide Exchange Factors/metabolism , MicroRNAs/metabolism , Reperfusion Injury/metabolism , Cell Culture Techniques/methods , Cell Line , Cell Survival , Glucose/metabolism , Humans , Models, Biological , Oxygen/metabolism , rab3A GTP-Binding Protein/metabolism
14.
J Integr Neurosci ; 20(3): 529-539, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34645086

ABSTRACT

Rab3a, a subtype protein in the Rab3 family amongst the small G proteins, is closely associated with the learning and memory formation process. Various neuronal stimuli can induce the expression of Rab3a; however, how DNA modification is involved in regulating its expression is not fully understood. Ten-eleven translocation (TET) proteins can oxidate methylcytosine to hydroxymethylcytosine, which can further activate gene expression. Previous studies reported that TET-mediated regulation of 5hmC induced by learning is involved in neuronal activation. However, whether Tet protein regulates Rab3a is unknown. To understand the role of TET-mediated 5hmC on Rab3a in neuronal activation, we adopted a KCl-induced depolarization protocol in cultured primary cortical neurons to mimic neuronal activity in vitro. After KCl treatment, Rab3a and Tet3 mRNA expression were induced. Moreover, we observed a decrease in the methylation level and an increase of hydroxymethylation level surrounding the CpG island near the transcription start site of Rab3a. Furthermore, recently, Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) has proven powerful in identifying open chromatin in the genome of various eukaryotes. Using FAIRE-qPCR, we observed a euchromatin state and the increased occupancy of Tet3, H3K4me3, and H3K27ac at the promoter region of Rab3a after KCl treatment. Finally, by using shRNA to knockdown Tet3 prior KCl treatment, all changes mentioned above vanished. Thus, our findings elucidated that the neuronal activity-induced accumulation of hydroxymethylation, which Tet3 mediates, can introduce an active and permissive chromatin structure at Rab3a promoter and lead to the induction of Rab3a mRNA expression.


Subject(s)
DNA Methylation/physiology , Dioxygenases/metabolism , Neurons/metabolism , rab3 GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Mice , Mitosis/physiology
15.
Int J Mol Sci ; 22(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34299299

ABSTRACT

Small Rab GTPases, the largest group of small monomeric GTPases, regulate vesicle trafficking in cells, which are integral to many cellular processes. Their role in neurological diseases, such as cancer and inflammation have been extensively studied, but their implication in kidney disease has not been researched in depth. Rab3a and its effector Rabphillin-3A (Rph3A) expression have been demonstrated to be present in the podocytes of normal kidneys of mice rats and humans, around vesicles contained in the foot processes, and they are overexpressed in diseases with proteinuria. In addition, the Rab3A knockout mice model induced profound cytoskeletal changes in podocytes of high glucose fed animals. Likewise, RphA interference in the Drosophila model produced structural and functional damage in nephrocytes with reduction in filtration capacities and nephrocyte number. Changes in the structure of cardiac fiber in the same RphA-interference model, open the question if Rab3A dysfunction would produce simultaneous damage in the heart and kidney cells, an attractive field that will require attention in the future.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Kidney/metabolism , Nerve Tissue Proteins/metabolism , Vesicular Transport Proteins/metabolism , rab3A GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/physiology , Animals , Epithelial Cells/metabolism , Humans , Kidney/pathology , Kidney Glomerulus/metabolism , Nerve Tissue Proteins/physiology , Podocytes/metabolism , Vesicular Transport Proteins/physiology , rab GTP-Binding Proteins/metabolism , rab3A GTP-Binding Protein/physiology , Rabphilin-3A
16.
J Cell Sci ; 134(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34100549

ABSTRACT

Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of Ca2+-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) as well as Rab3a, which we have previously described to be a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.


Subject(s)
Exocytosis , Lysosomes , GTP-Binding Proteins , Guanine Nucleotide Exchange Factors , rab GTP-Binding Proteins , rab3A GTP-Binding Protein
17.
Neuromolecular Med ; 23(1): 130-139, 2021 03.
Article in English | MEDLINE | ID: mdl-33377988

ABSTRACT

Synaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.


Subject(s)
Brain Chemistry/drug effects , Flavones/pharmacology , Polyisoprenyl Phosphates/metabolism , Sesquiterpenes/metabolism , Terpenes/metabolism , Aging/metabolism , Animals , Brain/growth & development , Brain/metabolism , Cholesterol/metabolism , Male , Membrane Glycoproteins/agonists , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Protein Prenylation , Protein Processing, Post-Translational , Protein-Tyrosine Kinases , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , rab3A GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism
18.
Molecules ; 25(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751823

ABSTRACT

Cocaine-induced plasticity in the glutamatergic transmission and its N-methyl-d-aspartate (NMDA) receptors are critically involved in the development of substance use disorder. The presynaptic active zone proteins control structural synaptic plasticity; however, we are still far from understanding the molecular determinants important for cocaine seeking behavior. The aim of this study was to investigate the effect of cocaine self-administration and different conditions of cocaine forced abstinence on the composition of the NMDA receptor subunits and on the levels of active zone proteins, i.e., Ras-related protein 3A (Rab3A), Rab3 interacting molecules 1 (RIM1) and mammalian uncoordinated protein 13 (Munc13) in the rat nucleus accumbens. We found an up-regulation of the accumbal levels of GluN1 and GluN2A following cocaine self-administration that was paralleled by an increase of Munc13 and RIM1 levels. At the same time, we also demonstrated that different conditions of cocaine abstinence abolished changes in NMDA receptor subunits (except for higher GluN1 levels after cocaine abstinence with extinction training), while an increase in the Munc13 concentration was shown in rats housed in an enriched environment. In conclusion, cocaine self-administration is associated with the specific up-regulation of the NMDA receptor subunit composition and is related with new presynaptic targets controlling neurotransmitter release. Moreover, changes observed in cocaine abstinence with extinction training and in an enriched environment in the levels of NMDA receptor subunit and in the active zone protein, respectively, may represent a potential regulatory step in cocaine-seeking behavior.


Subject(s)
Cocaine-Related Disorders/metabolism , Cocaine/administration & dosage , GTP-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Substance Withdrawal Syndrome/metabolism , rab3A GTP-Binding Protein/metabolism , Animals , Behavior, Animal/drug effects , Drug-Seeking Behavior , Male , Neuronal Plasticity/drug effects , Rats , Rats, Wistar , Self Administration , Synaptic Transmission/drug effects , Up-Regulation/drug effects
19.
J Proteomics ; 212: 103549, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31698103

ABSTRACT

Vertebrates usually have three class V myosin paralogues (MyoV) to control membrane trafficking in the actin-rich cell cortex, but their functional overlapping or differentiation through cargoes selectivity is yet only partially understood. In this work, we reveal that the globular tail domain of MyoVc binds to the active form of small GTPase Rab3A with nanomolar affinity, a feature shared with MyoVa but not with MyoVb. Using molecular docking analyses guided by chemical cross-linking restraints, we propose a model to explain how Rab3A selectively recognizes MyoVa and MyoVc via a distinct binding site from that used by Rab11A. The MyoVa/c binding interface involves multiple residues from both lobules (I and II) and the short helix at the α2-α3 link region, which is conserved between MyoVa and MyoVc, but not in MyoVb. This motif is also responsible for the selective binding of RILPL2 by MyoVa and potentially MyoVc. Together, these findings support the selective recruitment of MyoVa and MyoVc to exocytic pathways via Rab3A and expand our knowledge about the functional evolution of class V myosins. SIGNIFICANCE: Hormone secretion, neurotransmitter release, and cytoplasm membrane recycling are examples of processes that rely on the interaction of molecular motors and Rab GTPases to regulate the intracellular trafficking and tethering of vesicles. Defects in these proteins may cause neurological impairment, immunodeficiency, and other severe disorders, being fatal in some cases. Despite their crucial roles, little is known about how these molecular motors are selectively recruited by specific members of the large family of Rab GTPases. In this study, we unveil the interaction between the actin-based molecular motor Myosin Vc and the small GTPase Rab3A, a key coordinator of vesicle trafficking and exocytosis in mammalian cells. Moreover, we propose a model for their recognition and demonstrate that Rab3A specifically binds to the globular tail of Myosins Va and Vc, but not of Myosin Vb, advancing our knowledge about the molecular basis for the selective recruitment of class V myosins by Rab GTPases.


Subject(s)
Exocytosis , Myosin Type V/chemistry , rab3A GTP-Binding Protein/chemistry , Actins/metabolism , Animals , Biological Transport , Cell Line , Haplorhini , Humans , Models, Molecular , Molecular Docking Simulation/methods , Myosin Type V/isolation & purification , Myosin Type V/metabolism , Protein Binding , Sequence Homology, Amino Acid , rab3A GTP-Binding Protein/isolation & purification , rab3A GTP-Binding Protein/metabolism
20.
FEBS J ; 287(10): 2037-2054, 2020 05.
Article in English | MEDLINE | ID: mdl-31686426

ABSTRACT

While it is generally accepted that α-synuclein oligomers (αSOs) play an important role in neurodegeneration in Parkinson's disease, the basis for their cytotoxicity remains unclear. We have previously shown that docosahexaenoic acid (DHA) stabilizes αSOs against dissociation without compromising their ability to colocalize with glutamatergic synapses of primary hippocampal neurons, suggesting that they bind to synaptic proteins. Here, we develop a proteomic screen for putative αSO binding partners in rat primary neurons using DHA-stabilized human αSOs as a bait protein. The protocol involved co-immunoprecipitation in combination with a photoactivatable heterobifunctional sulfo-LC-SDA crosslinker which did not compromise neuronal binding and preserved the interaction between the αSOs-binding partners. We identify in total 29 proteins associated with DHA-αSO of which eleven are membrane proteins, including synaptobrevin-2B (VAMP-2B), the sodium-potassium pump (Na+ /K+ ATPase), the V-type ATPase, the voltage-dependent anion channel and calcium-/calmodulin-dependent protein kinase type II subunit gamma; only these five hits were also found in previous studies which used unmodified αSOs as bait. We also identified Rab-3A as a target with likely disease relevance. Three out of four selected hits were subsequently validated with dot-blot binding assays. In addition, likely binding sites on these ligands were identified by computational analysis, highlighting a diversity of possible interactions between αSOs and target proteins. These results constitute an important step in the search for disease-modifying treatments targeting toxic αSOs.


Subject(s)
Docosahexaenoic Acids/chemistry , Parkinson Disease/genetics , Proteomics , alpha-Synuclein/chemistry , Animals , Brain/metabolism , Brain/pathology , Hippocampus/drug effects , Hippocampus/ultrastructure , Humans , Nerve Degeneration/genetics , Neurons/chemistry , Neurons/drug effects , Parkinson Disease/pathology , Protein Binding/genetics , Proteome/genetics , Rats , Synapses/genetics , Synapses/ultrastructure , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL