Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Molecules ; 27(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364140

ABSTRACT

Andean lupin (Lupinus mutabilis) oil is rich in monounsaturated (54.2%) and polyunsaturated (28.5%) fatty acids but has a ω-3:ω-6 ratio (1:9.2) above the recommended values for human health. Sacha inchi (Plukenetia volubilis) oil presents a high polyunsaturated fatty acid content (linolenic 47.2% and linoleic 34.7%), along a ω-3:ω-6 ratio (1:0.74) good for human consumption. The objective of this research was to study the physico-chemical properties and oxidative stability of tarwi and sacha inchi oil blends (1:4, 1:3, 1:1, 3:1 and 4:1 w:w) with suitable ω-3:ω-6 ratios. All blends showed ω-3:ω-6 ratios between 1:0.8 and 1:1.9, acceptable from a nutritional point of view, and high total tocopherols' content (1834-688 mg/kg), thanks to sacha inchi. The oxidative stability index (OSI) of the mixtures by the Rancimat method at 120 °C ranged from 0.46 to 8.80 h. The shelf-life of 1:1 tarwi/sacha inchi oil blend was 1.26 years; its entropy (-17.43 J/mol), enthalpy (107.04 kJ/mol), activation energy (110.24 kJ/mol) and Gibbs energy (113.76 kJ/mol) suggest low oxidation reaction rates and good stability. Hence, balanced blends of tarwi/sacha inchi oils can achieve optimal nutritional properties and enhanced shelf-life.


Subject(s)
Euphorbiaceae , Fatty Acids, Omega-3 , Lupinus , Humans , Plant Oils/chemistry , Euphorbiaceae/chemistry , Seeds/chemistry , Fatty Acids, Omega-3/analysis , Nutritive Value , Oxidative Stress
2.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946598

ABSTRACT

Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11-21 MPa), temperature (40-60 °C), and co-solvent contribution (5-15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.


Subject(s)
Antioxidants/pharmacology , Mangifera/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Oils/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Chromatography, Supercritical Fluid , Phenols/chemistry , Phenols/isolation & purification , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification
3.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34201924

ABSTRACT

Vegetable oils have been used for different applications and, more recently, as an active host medium to obtain nanoparticles for employment in bionanotechnological applications. Nevertheless, oils are very susceptible to oxidation during production, storage, and transportation because of their chemical composition. Consequently, any modification in their production must be accompanied by an analysis of the oxidative stability. In this study, naked and biocompatible gold nanoparticles (AuNPs) were grown on sunflower oil during sputtering deposition using different deposition times. Size and morphology were determined by transmission electron microscopy (TEM) and their concentrations were found by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Rancimat® method was employed to evaluate the AuNPs influence on the oxidative stability of the vegetable oil. Well-dispersed quasi-spherical NPs were produced with a mean diameter in the 2.9-3.7 nm range and they were concentration-dependent on the deposition time. A concentration of about 11 mg/L, 38 mg/L, and 225 mg/L of AuNPs was obtained for a deposition time of 5 min, 15 min, and 30 min, respectively. The results also revealed that AuNPs negatively affected the oxidative stability of the sunflower oil and exponentially reduced the induction period (IP) with the increase in AuNPs content. IP reductions of 63%, 77%, and 81% were determined for the AuNPs containing samples at 11 mg/L, 38 mg/L, and 225 mg/L. For the first time, it is reported that naked AuNPs promote the rapid degradation of vegetable oil and this points out the need for attention relative to the quality of vegetable oils used to host metal nanoparticles.

4.
Food Chem ; 357: 129754, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33894573

ABSTRACT

Cloning techniques are used to improve agronomical traits and answer to the demand for fine chocolate. The objective of this study was to predict the concentrations of bioactive amines, phenolic compounds, and the antioxidant potential of dark monoclonal chocolate from nine fine cocoa varieties by FTIR analysis and conventional techniques. Total phenolic compounds, bioactive amines and antioxidant activity varied significantly among chocolates. The antioxidant activity was also affected by the analytical method (DPPH vs. Rancimat). Chemometric models based on FTIR data provided satisfactory predictions of the concentrations of the amines: spermidine (R2 = 0.92; RMSEP = 0.39; RMSEC = 0.21), tryptamine (R2 = 0.92; RMSEP = 0.41; RMSEC = 0.20), cadaverine (R2 = 0.82; RMSEP = 1.58; RMSEC = 0.75) and tyramine (R2 = 0.87; RMSEP = 1.87; RMSEC = 0.68); as well as phenolic compounds and antioxidant activity by Rancimat® (R2 = 0.98; RMSEP = 0.32; RMSEC = 0.21) and DPPH (R2 = 0.97; RMSEP = 4.05; RMSEC = 1.66). The wavenumbers of amines vibrations are among those that most affected antioxidant prediction models, confirming the contribution of amines to the antioxidant activity of chocolates.

5.
Food Chem ; 340: 127942, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32890859

ABSTRACT

Sacha inchi (Plukenetia volubilis) oil (SI) is appreciated for its nutritional and sensorial characteristics. The aim of this study was to evaluate SI changes during French fries deep-frying at 170 °C or 180 °C up to 119 and 50 min, respectively; commercial soybean oil (SO) was tested as control. SI had high α-linolenic acid (53.8%), linoleic acid (33.4%) and total tocopherols (2540.1 mg/kg). During frying tocopherol content, oil stability and antioxidant capacity (ABTS, DPPH) decreased following zero-order kinetics; γ-tocopherol showed the strongest decrease. Notwithstanding the high SI unsaturation and the commercial antioxidant (TBHQ) in SO, SI showed slightly higher or similar hydrolysis (free fatty acids and diacylglycerols), similar primary (K232, oxidized-triacylglycerols) and lower secondary (K268, triacylglycerol oligopolymers) oxidation. Because of the high tocopherol content, SI showed lower degradation than SO. Thus, SI is suitable for short-term deep-frying; additionally, it may enhance the nutritional value and the flavour of fried foods.


Subject(s)
Antioxidants/analysis , Cooking , Euphorbiaceae/chemistry , Fatty Acids/analysis , Plant Oils/chemistry , Tocopherols/analysis , Oxidation-Reduction
6.
Food Res Int ; 136: 109596, 2020 10.
Article in English | MEDLINE | ID: mdl-32846621

ABSTRACT

Nuts are considered highly nutritious foods and a source of health-promoting compounds. Therefore, the aim of this study was to evaluate the chemical composition (proximate composition, fatty acids, volatile compounds, total phenolics, squalene, and ß-sitosterol) of eleven pecan cultivars harvested in Rio Grande do Sul State (Brazil) and investigate their oxidative stability by the Rancimat method. 'Barton' is the main cultivar produced in Brazil and presented the highest protein, linoleic acid, and linolenic acid values and the lowest saturated fatty acid values, which provide health benefits. 'Mahan' showed the highest oxidation induction time, both in extracted oil and ground samples, low abundance of lipid oxidation compounds, low polyunsaturated fatty acids, high levels of oleic acid and ß-sitosterol, which suggests potential for storage. 'Stuart' and 'Success' had the highest total dietary fiber values. Moreover, analysis showed that 'Chickasaw' and 'Success' had large quantities of compounds correlated to lipid oxidation, suggesting low stability for long-term storage. These results imply that the physicochemical characteristics and proximate composition of pecan nut cultivars from southern Brazil have variable parameters that may depend on their genetic variability.


Subject(s)
Carya , Brazil , Nuts , Oxidative Stress , Phenols
7.
Food Res Int ; 135: 109305, 2020 09.
Article in English | MEDLINE | ID: mdl-32527490

ABSTRACT

Aromatization of extra-virgin olive oil (EVOO) with aromatic plants is commonly used to enrich the oil with aromatic and antioxidant compounds. Ultrasound can be an alternative to accelerate this process. The objective of this work was to determine if ultrasound is able to accelerate EVOO aromatization with rosemary and basil and how it affects the migration of volatile and other compounds, the oxidative stability and the antioxidant capacity of the aromatized products. Ultrasound parameters (amplitude, time, and temperature of extraction) were optimized for each herb with central composite designs. Free fatty acid, peroxide value, K232, K270, ΔK, fatty acid profile, total phenolics, antioxidant capacity, polar compounds, oxidative stability and volatile compounds profile were evaluated in all samples. Physical effects of ultrasound on the herbs were observed by scanning electron microscopy. In the optimization, variables related to the oxidative processes were minimized and compounds migration and oxidative stability were maximized. Results were 70.09% amplitude, 36.6 min and 35 °C for rosemary and 95.98% amplitude, 9.9 min and 30 °C for basil. These conditions were compared to 7 and 15 days of conventional maceration (CM). Aromatization of EVOO with rosemary, both by ultrasound assisted maceration (UAM) or CM, improved total phenolics, terpenes, esters, ketones, stability and induction times, as well as decreased the values for the quality parameters. The use of UAM accelerated the process to 37 min. However, aromatization with basil by CM increased the values for the quality parameters and reduced the total phenolics, the antioxidant capacity and the induction and stability times. UAM with basil reached better results than those observed for CM, in only 10 min. In conclusion, rosemary is more appropriate than basil for EVOO aromatization, and UAM was the best choice to accelerate the processes when compared to CM.


Subject(s)
Ocimum basilicum , Rosmarinus , Olive Oil , Oxidation-Reduction , Plant Oils
8.
Antioxidants (Basel) ; 9(2)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050540

ABSTRACT

Arabinoxylans (AX) are polysaccharides with antioxidant activity and emulsifying properties, which make them an attractive alternative for its potential application as a natural antioxidant in oils. Therefore, this work aimed to investigate the effect of ultrasonic treatment of AX on their antioxidant capacity and its ability to improve the oxidative stability of soybean oil. For this purpose, AX were exposed to ultrasonic treatment at 25% (100 W, AX-1) and 50% (200 W, AX-2) power and an operating frequency of 20 KHz during 15 min, and their macromolecular properties (weight average molecular weight (Mw), polydispersity index and intrinsic viscosity) were evaluated. The antioxidant capacity of AX was determined by the DPPH assay and Rancimat test. Results showed that ultrasonic treatment did not affect the molecular identity of the polysaccharide but modified its Mw distribution. AX-1 showed the highest antioxidant activity (75% inhibition) at 533 µg/mL by the DPPH method compared to AX and AX-2. AX at 0.25% (w/v) and AX-1 at 0.01% (w/v) exerted the highest protective effects on oxidative stability of soybean oil with induction periods of 7.69 and 5.54 h, respectively. The results indicate that AX could be a good alternative for the potential application as a natural antioxidant in oils.

9.
Carbohydr Polym ; 133: 578-86, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26344316

ABSTRACT

The effect of the degree of polymerization (DP) of inulin was evaluated on its encapsulant characteristics. We assessed the influence of the average inulin DP (DP ≥10 and DP ≥23) in the ultrasound-assisted encapsulation of annatto seed oil using the freeze-drying technique for particle formation. The intensification of the homogenization process with ultrasound did not improve the characteristics of the emulsions due to the physicochemical limitations of the inulin molecular chain (molecules do not exhibit surface activity). The particle morphology, oil entrapment efficiency, encapsulation efficiency, X-ray diffraction, thermogravimetric analysis and Rancimat analyses proved the effectiveness of inulin as a wall material. The properties influenced by the DP were the surface oil, encapsulation efficiency, water activity, particle size and oxidative stability of the encapsulated oil because the highest DP promoted the formation of microparticles with lower surface oil content, greater encapsulation efficiency, low water activity, larger size and greater protection against oil oxidation.


Subject(s)
Bixaceae/chemistry , Inulin/chemistry , Plant Oils/chemistry , Polymerization , Seeds/chemistry , Ultrasonic Waves , Capsules , Freeze Drying , Microspheres , Oxidation-Reduction , Particle Size , Surface Properties
10.
Braz. arch. biol. technol ; Braz. arch. biol. technol;56(3): 431-438, May-June 2013. tab
Article in English | LILACS | ID: lil-679190

ABSTRACT

This work aimed to study the antioxidant activity of a quercetin-containing flavonoid extract (FQЕ) obtained from Sophora japonica L. flower buds rich in quercetin (91.6%). Radical scavenging activity was analyzed towards the synthetic radicals DPPH• and ABTS•+ and antioxidant activity was evaluated applying the method of oxygen consumption in a model system containing methyl linoleate. Model food systems of lard and sunflower oil were explored by the application of Rancimat method and chicken as a real food system was investigated by the thiobarbituric acid test. Results showed a high radical scavenging activity and antioxidant capacity of QFE similar to those of the pure flavonoid quercetin.

11.
São Paulo; s.n; 2012. 214 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-691567

ABSTRACT

O objetivo desta pesquisa foi analisar o potencial de produtos e subprodutos da castanha-do-brasil, focou-se primariamente em sua forma in natura, em seguida no óleo extraído desse fruto e seu respectivo subproduto convertido em farinha. Inicialmente apresenta-se uma breve revisão de literatura vislumbrando aspectos relevantes a investigações, com respeito aos potenciais dessas oleaginosas. Em seguida foca-se a avaliação microbiológica, de micotoxinas e a caracterização em macro e micronutrientes dessa amêndoa. Após isso, apresenta-se um estudo sobre as formas de extrações lipídicas, avaliando as características físico-químicas, colorimétricas e perfis de ácidos graxos dos óleos obtidos, analisando seu comportamento térmico, sua estabilidade oxidativa e o perfil espectroscópico, correlacionando as diferenças impostas ao material de acordo com o método de extração. Posteriormente, aborda-se o estudo do subproduto da extração lipídica e sua transformação em farinha, por meio de análises de composição física; físico-químicas; propriedades funcionais e tecnológicas; análises de minerais e a composição em aminoácidos. O estudo inicial confirmou a potencialidade da castanha-do-brasil nos mais diversos segmentos industriais e suas inúmeras possibilidades de pesquisas. Os dados relacionados à composição desse fruto coadunam com as pesquisas que relatam sua alta qualidade nutricional e funcional. Com relação à extração lipídica foi possível observar que a forma de extração com utilização de fluido supercrítico com dióxido de carbono (CO2) apresentou o melhor rendimento e manutenção da qualidade do material extraído. As comparações dos eventos termogravimétricos e diferenciais em diferentes atmosferas mostraram maior estabilidade térmica nos óleos extraídos com fluidos supercríticos (CO2). A avaliação acelerada da estabilidade oxidativa dos óleos via análise por Rancimat em comparação com o DSC evidenciam diferenças entre aos métodos de avaliação e entre as formas de...


The objective of this research was to investigate the potential of products and by-products of Brazil nut focusing primarily on the in natura fruit, followed by the oil extracted from this fruit and the resulting by-product that is converted into flour. Firstly, a brief literature review of published relevant information on the potential of this oilseed is presented. Next, the microbiological evaluation for the presence of mycotoxins and the characterization of macro- and micronutrients of this kernel are performed. Then, a study on lipid extractions is presented evaluating the physicochemical and colorimetric characteristics and the fatty acid profiles of the oils obtained analyzing their thermal behavior, oxidative stability, and spectroscopic profile and correlating the differences in the materials according to the method of extraction. Lastly, the by-product obtained from the lipid extraction and processing into flour is evaluated through the analysis of physical composition and physicochemical, functional, and technological properties as well as the analysis of minerals and amino acid composition. The preliminary study confirmed the potential use of Brazil nut in many different industries and its many possibilities for research. The data obtained from the analysis of this fruit composition are consistent with those of studies reporting its high nutritional and functional quality. With regard to the extraction of lipids, it was observed that the extraction with supercritical carbon dioxide (CO2) showed the best performance maintaining the quality of the extracted material. The comparison of the thermogravimetric and differential events under different atmospheres showed higher thermal stability for the oils extracted with supercritical fluids (CO2). The evaluation of the accelerated oxidative stability of the oils by Rancimat analysis compared to DSC showed differences between the methods of evaluation and different types of oil extraction. The evaluation...


Subject(s)
Bertholletia , Food Chemistry/analysis , Drug Synergism , Food Composition , Plant Oils/adverse effects
12.
Sci. agric. ; 62(3)2005.
Article in English | VETINDEX | ID: vti-439982

ABSTRACT

Biodiesel consists of long-chain fatty acid esters, derived from renewable sources such as vegetable oils, and its utilization is associated to the substitution of the diesel oil in engines. Depending on the raw material, biodiesel can contain more or less unsaturated fatty acids in its composition, which are susceptible to oxidation reactions accelerated by exposition to oxygen and high temperatures, being able to change into polymerized compounds. The objective of this work was to determine the oxidative stability of biodiesel produced by ethanolysis of neutralized, refined, soybean frying oil waste, and partially hydrogenated soybean frying oil waste. The evaluation was conducted by means of the Rancimat® equipment, at temperatures of 100 and 105ºC, with an air flow of 20 L h-1. The fatty acid composition was determined by GC and the iodine value was calculated. It was observed that even though the neutralized, refined and waste frying soybean oils presented close comparable iodine values, biodiesel presented different oxidative stabilities. The biodiesel from neutralized soybean oil presented greater stability, followed by the refined and the frying waste. Due to the natural antioxidants in its composition, the neutralized soybean oil promoted a larger oxidative stability of the produced biodiesel. During the deodorization process, the vegetable oils lose part of these antioxidants, therefore the biodiesel from refined soybean oil presented a reduced stability. The thermal process degrades the antioxidants, thus the biodiesel from frying waste oil resulted in lower stability, the same occuring with the biodiesel from partially hydrogenated waste oil, even though having lower iodine values than the other.


Biodiesel consiste em ésteres de ácidos graxos de cadeia longa, proveniente de fontes renováveis como óleos vegetais, e sua utilização está associada à substituição do diesel em motores. Dependendo da matéria-prima, o biodiesel pode conter mais ou menos ácidos graxos insaturados em sua composição, que são suscetíveis a reações de oxidação aceleradas pela exposição ao oxigênio e altas temperaturas, podendo resultar em compostos poliméricos prejudiciais ao motor. O objetivo deste trabalho foi avaliar a estabilidade oxidativa do biodiesel obtido pela etanólise dos óleos de soja neutro, refinado, usado em fritura, e óleo parcialmente hidrogenado usado em fritura. A avaliação foi feita através do equipamento Rancimat®, nas temperaturas de 100 e 105ºC, com fluxo de ar de 20 L h-1. A composição em ácidos graxos foi determinada por CG e o índice de iodo calculado. Embora os óleos de soja neutro, refinado e usado em fritura apresentassem índices de iodo próximos, a estabilidade oxidativa do biodiesel comportou-se de maneira distinta. O biodiesel de óleo neutro apresentou maior estabilidade, seguido pelo refinado e usado em fritura. Por conter antioxidantes naturais em sua composição, o óleo neutro de soja proporcionou uma estabilidade oxidativa maior ao biodiesel produzido. O proveniente de óleo refinado - que pelo processo de desodorização perde parte destes antioxidantes - apresentou menor estabilidade. O processo térmico degrada os antioxidantes, resultando em menor estabilidade ao biodiesel de óleo de fritura, ocorrendo o mesmo com o biodiesel de óleo hidrogenado usado em fritura, embora este apresentasse índice de iodo inferior aos demais.

13.
Sci. agric ; 62(3)2005.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1496549

ABSTRACT

Biodiesel consists of long-chain fatty acid esters, derived from renewable sources such as vegetable oils, and its utilization is associated to the substitution of the diesel oil in engines. Depending on the raw material, biodiesel can contain more or less unsaturated fatty acids in its composition, which are susceptible to oxidation reactions accelerated by exposition to oxygen and high temperatures, being able to change into polymerized compounds. The objective of this work was to determine the oxidative stability of biodiesel produced by ethanolysis of neutralized, refined, soybean frying oil waste, and partially hydrogenated soybean frying oil waste. The evaluation was conducted by means of the Rancimat® equipment, at temperatures of 100 and 105ºC, with an air flow of 20 L h-1. The fatty acid composition was determined by GC and the iodine value was calculated. It was observed that even though the neutralized, refined and waste frying soybean oils presented close comparable iodine values, biodiesel presented different oxidative stabilities. The biodiesel from neutralized soybean oil presented greater stability, followed by the refined and the frying waste. Due to the natural antioxidants in its composition, the neutralized soybean oil promoted a larger oxidative stability of the produced biodiesel. During the deodorization process, the vegetable oils lose part of these antioxidants, therefore the biodiesel from refined soybean oil presented a reduced stability. The thermal process degrades the antioxidants, thus the biodiesel from frying waste oil resulted in lower stability, the same occuring with the biodiesel from partially hydrogenated waste oil, even though having lower iodine values than the other.


Biodiesel consiste em ésteres de ácidos graxos de cadeia longa, proveniente de fontes renováveis como óleos vegetais, e sua utilização está associada à substituição do diesel em motores. Dependendo da matéria-prima, o biodiesel pode conter mais ou menos ácidos graxos insaturados em sua composição, que são suscetíveis a reações de oxidação aceleradas pela exposição ao oxigênio e altas temperaturas, podendo resultar em compostos poliméricos prejudiciais ao motor. O objetivo deste trabalho foi avaliar a estabilidade oxidativa do biodiesel obtido pela etanólise dos óleos de soja neutro, refinado, usado em fritura, e óleo parcialmente hidrogenado usado em fritura. A avaliação foi feita através do equipamento Rancimat®, nas temperaturas de 100 e 105ºC, com fluxo de ar de 20 L h-1. A composição em ácidos graxos foi determinada por CG e o índice de iodo calculado. Embora os óleos de soja neutro, refinado e usado em fritura apresentassem índices de iodo próximos, a estabilidade oxidativa do biodiesel comportou-se de maneira distinta. O biodiesel de óleo neutro apresentou maior estabilidade, seguido pelo refinado e usado em fritura. Por conter antioxidantes naturais em sua composição, o óleo neutro de soja proporcionou uma estabilidade oxidativa maior ao biodiesel produzido. O proveniente de óleo refinado - que pelo processo de desodorização perde parte destes antioxidantes - apresentou menor estabilidade. O processo térmico degrada os antioxidantes, resultando em menor estabilidade ao biodiesel de óleo de fritura, ocorrendo o mesmo com o biodiesel de óleo hidrogenado usado em fritura, embora este apresentasse índice de iodo inferior aos demais.

SELECTION OF CITATIONS
SEARCH DETAIL