Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546359

ABSTRACT

(1) Background: Preoptic region of hypothalamus is responsible to control maternal behavior, which was hypothesized to be associated with gene expressional changes. (2) Methods: Transcriptome sequencing was first applied in the preoptic region of rat dams in comparison to a control group of mothers whose pups were taken away immediately after parturition and did not exhibit caring behavior 10 days later. (3) Results: Differentially expressed genes were found and validated by quantitative RT-PCR, among them NACHT and WD repeat domain containing 1 (Nwd1) is known to control androgen receptor (AR) protein levels. The distribution of Nwd1 mRNA and AR was similar in the preoptic area. Therefore, we focused on this steroid hormone receptor and found its reduced protein level in rat dams. To establish the function of AR in maternal behavior, its antagonist was administered intracerebroventricularly into mother rats and increased pup-directed behavior of the animals. (4) Conclusions: AR levels are suppressed in the preoptic area of mothers possibly mediated by altered Nwd1 expression in order to allow sustained high-level care for the pups. Thus, our study first implicated the AR in the control of maternal behaviors.


Subject(s)
Maternal Behavior , Postpartum Period , Preoptic Area/metabolism , Receptors, Androgen/physiology , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Mothers , Rats , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Sequence Analysis, RNA
2.
Brain Struct Funct ; 222(2): 781-798, 2017 03.
Article in English | MEDLINE | ID: mdl-27300187

ABSTRACT

Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.


Subject(s)
Animals, Suckling , Galanin/metabolism , Maternal Behavior/physiology , Neurons/metabolism , Preoptic Area/metabolism , Telencephalic Commissures/metabolism , Animals , Female , Glutamic Acid/metabolism , Neural Pathways/cytology , Neural Pathways/metabolism , Neural Pathways/ultrastructure , Neuropeptides/metabolism , Oxytocin/metabolism , Phosphorylation , Preoptic Area/ultrastructure , Prolactin/metabolism , Rats , Rats, Wistar , STAT5 Transcription Factor/metabolism , Telencephalic Commissures/cytology , Thalamus/metabolism , Thalamus/ultrastructure
3.
Adv Biomed Res ; 6: 166, 2017.
Article in English | MEDLINE | ID: mdl-29387677

ABSTRACT

BACKGROUND: The aim of this study was investigation of the effects of Nigella sativa (NS) seeds on hypothyroid pregnant rats and their progenies. MATERIALS AND METHODS: Hypothyroidism was induced by propylthiouracil (PTU) 0.03% in drinking water. Female rats were divided into seven groups: control, PTU, PTU-NS (100, 200, and 400 mg/kg), and NS (100 and 400 mg/kg). All treatments were done 20 days before mating and during pregnancy. The weight of rat dams and progenies, number of progenies and serum T4, estradiol and prolactin (PRL) levels in rat dams were measured for all groups. RESULTS: Serum T4 in all PTU-NS groups before mating was significantly increased versus PTU group. Body weight of rat dams before mating in all groups of PTU-NS was increased versus PTU group by P < 0.001, P < 0.05, and P < 0.001, respectively and in NS 100 and NS 400 was increased versus control group (P < 0.001). The number of offspring was significantly decreased in PTU and PTU-NS versus control group. The weight of progenies in NS 400 was higher than control group (P < 0.001) and was increased in PTU-NS 200 and PTU-NS 400 versus PTU group by P < 0.001 and P < 0.05, respectively. Serum PRL level in rat dams in control, PTU, and PTU-NS groups were not statistically different between groups but significantly increased in NS 400 group when compared to control group. Estradiol levels were not significantly different in rat dams at 5 days after delivery. CONCLUSION: These results demonstrated that feeding of rat dams with NS extract before mating has positive protective effects on progenies. These effects may be due to antioxidant properties of NS in reducing oxidative stress and thyroid damages induced by PTU.

4.
Psychoneuroendocrinology ; 38(12): 3070-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24094875

ABSTRACT

Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.


Subject(s)
Lactation/physiology , Maternal Behavior/physiology , Motivation/physiology , Neuropeptides/genetics , Neuropeptides/physiology , Thalamus/physiology , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/physiology , Cholera Toxin/pharmacology , Conditioning, Operant/physiology , Female , Genes, fos , Image Processing, Computer-Assisted , In Situ Hybridization , Lentivirus/genetics , Male , Nerve Fibers/physiology , Polymerase Chain Reaction , Preoptic Area/cytology , Preoptic Area/physiology , Prolactin/blood , Rats , Rats, Wistar , Shab Potassium Channels/metabolism , Stereotaxic Techniques , Thalamus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL