Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Toxicol ; 42(2): 182-197, 2023.
Article in English | MEDLINE | ID: mdl-36519492

ABSTRACT

Recommendations on study designs that adequately evaluate the in-life effects leading to juvenile bone toxicity, the various imaging modalities that can aid interpretation of the bone effects, biomarkers that may be useful, and regulatory issues were presented in this 2020 ACT symposium. The pathologies encountered in past studies were briefly mentioned. The first speaker covered study design and the numbers of juveniles that may be necessary to power the evaluation. Changes in the International Council for Harmonisation (IHC) guidelines were reviewed. The second speaker launched the rest of the symposium by describing the tools that may help assess juvenile bone toxicity, specifically those used to monitor bone toxicity, healing, and remodeling as they relate or drive the study design including model, species selection, and age. The third speaker addressed in more depth the micro-Computed Tomography (CT) applications in juvenile toxicology for evaluation of skeletal elements and bone growth in both embryo-fetal development (EFD) and pre and postnatal development (PPND) studies. Lastly, a regulatory perspective on strategies to assess juvenile bone toxicity and the concerns of the regulatory agency with respect to these potential changes in the juvenile population was addressed.


Subject(s)
Research Design , Toxicity Tests , Toxicity Tests/methods , X-Ray Microtomography , Biomarkers , Wound Healing
2.
Biomed Pharmacother ; 153: 113431, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076549

ABSTRACT

The ultimate goal of regenerative medicine is to repair, regenerate, or reconstruct functional loss in failed tissues and/or organs. Although regenerative medicine is a relatively new field, multiple diverse research groups are helping regenerative medicine reach its objectives. All endeavors in this field go through in silico, in vitro, in vivo, and clinical trials which are prerequisites to translating such approaches from the bench to the bedside. However, despite such promise, there are only a few regenerative medicine approaches that have actually entered commercialization due to extensive demands for the inclusion of multiple rules, principles, and finances, to reach the market. This review covers the commercialization of regenerative medicine, including its progress (or lack thereof), processes, regulatory concerns, and immunological considerations to name just a few key areas. Also, commercially available engineered tissues, including allografts, synthetic substitutes, and 3D bioprinting inks, along with commercially available cell and gene therapeutic products, are reviewed. Clinical applications and future perspectives are stated with a clear road map for improving the regenerative medicine field.


Subject(s)
Bioprinting , Regenerative Medicine , Tissue Engineering
3.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070430

ABSTRACT

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Subject(s)
Agriculture/methods , CRISPR-Cas Systems , Crops, Agricultural/genetics , Gene Editing/methods , Genome, Plant , Plant Breeding/methods , Edible Grain/genetics , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism
4.
Int J Bioprint ; 6(3): 272, 2020.
Article in English | MEDLINE | ID: mdl-33088986

ABSTRACT

Bioethical and legal issues of three-dimensional (3D) bioprinting as the emerging field of biotechnology have not yet been widely discussed among bioethicists around the world, including Russia. The scope of 3D bioprinting includes not only the issues of the advanced technologies of human tissues and organs printing but also raises a whole layer of interdisciplinary problems of modern science, technology, bioethics, and philosophy. This article addresses the ethical and legal issues of bioprinting of artificial human organs.

5.
Sci Eng Ethics ; 24(1): 73-91, 2018 02.
Article in English | MEDLINE | ID: mdl-28185142

ABSTRACT

Recent developments of three-dimensional printing of biomaterials (3D bioprinting) in medicine have been portrayed as demonstrating the potential to transform some medical treatments, including providing new responses to organ damage or organ failure. However, beyond the hype and before 3D bioprinted organs are ready to be transplanted into humans, several important ethical concerns and regulatory questions need to be addressed. This article starts by raising general ethical concerns associated with the use of bioprinting in medicine, then it focuses on more particular ethical issues related to experimental testing on humans, and the lack of current international regulatory directives to guide these experiments. Accordingly, this article (1) considers whether there is a limit as to what should be bioprinted in medicine; (2) examines key risks of significant harm associated with testing 3D bioprinting for humans; (3) investigates the clinical trial paradigm used to test 3D bioprinting; (4) analyses ethical questions of irreversibility, loss of treatment opportunity and replicability; (5) explores the current lack of a specific framework for the regulation and testing of 3D bioprinting treatments.


Subject(s)
Bioethical Issues , Bioprinting/ethics , Ethical Analysis , Ethics, Research , Printing, Three-Dimensional/ethics , Social Control, Formal , Tissue Engineering/ethics , Bioethical Issues/legislation & jurisprudence , Bioprinting/legislation & jurisprudence , Humans , Internationality , Organ Transplantation , Printing , Printing, Three-Dimensional/legislation & jurisprudence , Risk Assessment , Tissue Engineering/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL