Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.547
Filter
1.
Environ Sci Technol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102579

ABSTRACT

Graphene quantum dots (GQDs) are used in diverse fields from chemistry-related materials to biomedicines, thus causing their substantial release into the environment. Appropriate visual function is crucial for facilitating the decision-making process within the nervous system. Given the direct interaction of eyes with the environment and even nanoparticles, herein, GQDs, sulfonic acid-doped GQDs (S-GQDs), and amino-functionalized GQDs (A-GQDs) were employed to understand the potential optic neurotoxicity disruption mechanism by GQDs. The negatively charged GQDs and S-GQDs disturbed the response to light stimulation and impaired the structure of the retinal nuclear layer of zebrafish larvae, causing vision disorder and retinal degeneration. Albeit with sublethal concentrations, a considerably reduced expression of the retinal vascular sprouting factor sirt1 through increased DNA methylation damaged the blood-retina barrier. Importantly, the regulatory effect on vision function was influenced by negatively charged GQDs and S-GQDs but not positively charged A-GQDs. Moreover, cluster analysis and computational simulation studies indicated that binding affinities between GQDs and the DNMT1-ligand binding might be the dominant determinant of the vision function response. The previously unknown pathway of blood-retinal barrier interference offers opportunities to investigate the biological consequences of GQD-based nanomaterials, guiding innovation in the industry toward environmental sustainability.

2.
Exp Eye Res ; 246: 110016, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098587

ABSTRACT

Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.

3.
Mol Genet Genomic Med ; 12(8): e2505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108195

ABSTRACT

BACKGROUND: Biallelic variants in the major facilitator superfamily domain containing 8 gene (MFSD8) are associated with distinct clinical presentations that range from typical late-infantile neuronal ceroid lipofuscinosis type 7 (CLN7 disease) to isolated adult-onset retinal dystrophy. Classic late-infantile CLN7 disease is a severe, rare neurological disorder with an age of onset typically between 2 and 6 years, presenting with seizures and/or cognitive regression. Its clinical course is progressive, leading to premature death, and often includes visual loss due to severe retinal dystrophy. In rare cases, pathogenic variants in MFSD8 can be associated with isolated non-syndromic macular dystrophy with variable age at onset, in which the disease process predominantly or exclusively affects the cones of the macula and where there are no neurological or neuropsychiatric manifestations. METHODS: Here we present longitudinal studies on four adult-onset patients who were biallelic for four MFSD8 variants. RESULTS: Two unrelated patients who presented with adult-onset ataxia and had macular dystrophy on examination were homozygous for a novel variant in MFSD8 NM_152778.4: c.935T>C p.(Ile312Thr). Two other patients presented in adulthood with visual symptoms, and one of these developed mild to moderate cerebellar ataxia years after the onset of visual symptoms. CONCLUSIONS: Our observations expand the knowledge on biallelic pathogenic MFSD8 variants and confirm that these are associated with a spectrum of more heterogeneous clinical phenotypes. In MFSD8-related disease, adult-onset recessive ataxia can be the presenting manifestation or may occur in combination with retinal dystrophy.


Subject(s)
Macular Degeneration , Humans , Adult , Male , Female , Macular Degeneration/genetics , Macular Degeneration/pathology , Age of Onset , Ataxia/genetics , Ataxia/pathology , Alleles , Middle Aged , Mutation , Membrane Transport Proteins/genetics , Phenotype
4.
J Vet Intern Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136304

ABSTRACT

BACKGROUND: Occurrence of low blood taurine concentrations (B-TauC) and predisposing factors to taurine deficiency in English Cocker Spaniels (ECS) are incompletely understood. OBJECTIVES: Investigate the occurrence of low B-TauC in a Swedish population of ECS and evaluate the association between B-TauC and dog characteristics, clinical variables, and diet composition. ANIMALS: One-hundred eighty privately owned ECS. METHODS: Dogs were prospectively recruited and underwent physical examination, blood analyses, and echocardiographic and ophthalmic examinations. Dogs with clinical signs of congestive heart failure (CHF) also underwent thoracic radiography. Taurine concentrations were analyzed in plasma (EDTA and heparin) and whole blood. Diets consumed by the dogs at the time of the examination were analyzed for dietary taurine- (D-TauC), cysteine- (D-CysC), and methionine concentrations (D-MetC). RESULTS: Fifty-three of 180 dogs (29%) had low B-TauC, of which 13 (25%) dogs had clinical and radiographic signs of CHF, increased echocardiographic left ventricular (LV) dimensions and volumes, and impaired LV systolic function. Five (9%) dogs with low B-TauC had retinal abnormalities. Dietary MetC, dietary animal protein source (red/white meat), and age were associated with B-TauC in the final multivariable regression model (P < .001, R2 adj = .39). CONCLUSIONS AND CLINICAL IMPORTANCE: Low B-TauC suggests that taurine deficiency may play a role in the development of myocardial failure and CHF in ECS. Low D-MetC and diets with red meat as the animal protein source were associated with low B-TauC. Dogs with B-TauC below the normal reference range were older than dogs with normal concentrations.

5.
Ophthalmol Retina ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089460

ABSTRACT

OBJECTIVE: To refine retinal PRPH2-associated retinal degeneration (PARD) phenotypes using multimodal imaging. DESIGN: Retrospective review of clinical records and multimodal imaging. SUBJECTS: Patients who visited the inherited retinal degeneration (IRD) clinic at two tertiary referral eye centers with molecularly confirmed IRD due to PRPH2 variants. METHODS: Retinal imaging was reviewed using ultra-widefield (UWF) pseudocolor, UWF fundus autofluorescence (FAF), and spectral-domain optical coherence tomography (SD-OCT). Phenotypes were identified in the macular or peripheral region. A combined phenotype was considered if any phenotypes were present in both macular and peripheral regions. Mixed phenotypes in the macula or peripheral retina were considered if there were two distinct phenotypes identified in the same eye. The presence or absence of atrophy in the macular or peripheral area was also noted. MAIN OUTCOME MEASURE: Grading of multimodal imaging by phenotype and atrophy. RESULTS: A total of 144 eyes of 72 patients were included in this study. The majority of the eyes had combined macular and peripheral phenotypes (89/14, 61.8%), while 44 (30.6%) eyes had isolated macular findings, and 11 (7.6%) had isolated peripheral findings. Twenty-five eyes were classified with mixed macular phenotypes while fundus flavimaculatus dystrophy type was the most common combined macular and peripheral phenotype (54/144, 37.5%): n = 10 with macular dystrophy and macular flavimaculatus dystrophy, and n = 15 with butterfly pattern dystrophy and macular flavimaculatus dystrophy. Nearly half of the eyes (71/144, 49.3%) were identified to have concomitant outer retinal atrophy. Fundus flavimaculatus type dystrophy was also associated with the highest proportion of concomitant atrophy (57/71, 80.3%). CONCLUSION: PARD demonstrates a wide array of phenotypes using multimodal imaging. We report that combinations of classically described phenotypes were often seen. Additionally, macular and peripheral atrophy were often associated with PARD phenotypes. Refinement of PARD phenotypes using newer multimodal imaging techniques will likely assist diagnosis and future clinical trials.

7.
Int J Ophthalmol ; 17(7): 1217-1231, 2024.
Article in English | MEDLINE | ID: mdl-39026909

ABSTRACT

AIM: To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin (AST). METHODS: ICR mice were intraperitoneally injected NaIO3, CY-09, AST successively and divided into 5 groups, including the control, NaIO3, NaIO3+CY-09, NaIO3+AST, and NaIO3+CY-09+AST groups. Spectral domain optical coherence tomography and flash electroretinogram were examined and the retina tissues were harvested for immunohistochemistry, enzyme linked immunosorbent assay (ELISA), and Western blotting. Retinal pigment epithelium cell line (ARPE-19 cells) and mouse photoreceptor cells line (661W cells) were also treated with NaIO3, CY-09, and AST successively. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Apoptosis was analyzed by flow cytometry. Changes in autophagosome morphology were observed by transmission electron microscopy. Quantitative polymerase chain reaction (qPCR) was used to detect NLRP3 and caspase-1. NLRP3, caspase-1, cleaved caspase-1, p62, Beclin-1, and LC3 protein levels were measured by Western blotting. IL-1ß and IL-18 were measured by ELISA. RESULTS: Compared with the control group, the activity of NaIO3-treated 661W cells decreased within 24 and 48h, apoptosis increased, NLRP3, caspase-1, IL-1ß and IL-18 levels increased, and autophagy-related protein levels increased (P<0.05). Compared with NaIO3 group, CY-09 and AST inhibited apoptosis (P<0.05), reduced NLRP3, caspase-1, IL-1ß and IL-18 expression (P<0.05), and inhibited autophagy. Compared with the other groups, CY-09 combined with AST significantly decreased NLRP3 expression and inhibited the expression of the autophagy-related proteins p62, Beclin-1, and LC3 in vitro and in vivo (P<0.05). CONCLUSION: CY-09 and AST inhibit NaIO3-induced inflammatory damage through the NLRP3/autophagy pathway in vitro and in vivo. CY-09 and AST may protect retina from inflammatory injury.

8.
Front Endocrinol (Lausanne) ; 15: 1412138, 2024.
Article in English | MEDLINE | ID: mdl-39027475

ABSTRACT

Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , MicroRNAs , Oxidative Stress , Humans , MicroRNAs/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Apoptosis , Retinal Vessels/pathology , Retina/pathology , Retina/metabolism
9.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062975

ABSTRACT

Neutrophils, traditionally viewed as first responders to infection or tissue damage, exhibit dynamic and diverse roles in ocular health and disease. This review elaborates on previous findings that showed how neutrophils contribute to ocular diseases. In ocular infections, neutrophils play a pivotal role in host defense by orchestrating inflammatory responses to combat pathogens. Furthermore, in optic nerve neuropathies and retinal degenerative diseases like age-related macular degeneration (AMD) and diabetic retinopathy (DR), neutrophils are implicated in neuroinflammation and tissue damage owing to their ability to undergo neutrophil extracellular trap formation (NETosis) and secretion of inflammatory molecules. Targeting neutrophil-dependent processes holds promise as a therapeutic strategy, offering potential avenues for intervention in ocular infections, cancers, and retinal degenerative diseases. Understanding the multifaceted roles of neutrophils in ocular diseases is crucial for developing targeted therapies to improve patient outcomes.


Subject(s)
Eye Diseases , Neutrophils , Humans , Neutrophils/immunology , Neutrophils/metabolism , Eye Diseases/immunology , Eye Diseases/therapy , Animals , Extracellular Traps/metabolism , Extracellular Traps/immunology , Macular Degeneration/immunology , Macular Degeneration/pathology , Macular Degeneration/metabolism
10.
Exp Neurobiol ; 33(3): 152-164, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38993082

ABSTRACT

The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.

11.
Ophthalmic Genet ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956866

ABSTRACT

PURPOSE: To explore patterns of disease expression in Alagille syndrome (ALGS). METHODS: Patients underwent ophthalmic examination, optical coherence tomography (OCT) imaging, fundus intravenous fluorescein angiography (IVFA), perimetry and full-field electroretinograms (ffERGs). An adult ALGS patient had multimodal imaging and specialized perimetry. RESULTS: The proband (P1) had a heterozygous pathogenic variant in JAG1; (p.Gln410Ter) and was incidentally diagnosed at age 7 with a superficial retinal hemorrhage, vascular tortuosity, and midperipheral pigmentary changes. The hemorrhage recurred 15 months later. Her monozygotic twin sister (P2) had a retinal hemorrhage at the same location at age 11. Visual acuities for both patients were 20/30 in each eye. IVFA was normal. OCT showed thinning of the outer nuclear in the peripapillary retina. A ffERG showed normal cone-mediated responses in P1 (rod-mediated ERGs not documented), normal ffERGs in P2. Coagulation and liver function were normal. An unrelated 42-year-old woman with a de-novo pathogenic variant (p. Gly386Arg) in JAG1 showed a similar pigmentary retinopathy and hepatic vascular anomalies; rod and cone function was normal across large expanses of structurally normal retina that sharply transitioned to a blind atrophic peripheral retina. CONCLUSION: Nearly identical recurrent intraretinal hemorrhages in monozygotic twins with ALGS suggest a shared subclinical microvascular abnormality. We hypothesize that the presence of large areas of functionally and structurally intact retina surrounded by severe chorioretinal degeneration, is against a predominant involvement of JAG1 in the function of the neurosensory retina, and that instead, primary abnormalities of chorioretinal vascular development and/or homeostasis may drive the peculiar phenotypes.

12.
Curr Eye Res ; : 1-9, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039707

ABSTRACT

PURPOSE: This study aimed to investigate the protective or therapeutic effect of thymoquinone (TQ) in a retinal degeneration rat model and its relationships with the retina ultrastructure, heme oxygenase 1 (HO-1), caspase-3, and RPE65 expressions and to determine whether TQ has a therapeutic effect at the biochemical level. METHODS: A total of 25 adult Wistar albino rats were divided into the following treatment groups: saline (control: CONT), CO (corn oil), sodium iodate (SI), TQ + SI, and SI + TQ injection groups. Retina morphology, RPE65, HO-1, and caspase-3 expression levels were evaluated using immunohistochemistry, and optical density was determined using ImageJ. Ultrastructural evaluations were performed with electron microscopy. Thiol-disulfide homeostatic parameters were examined in serum samples. RESULTS: Outer nuclear layer (ONL) thickness was significantly higher in the SI + TQ group compared to the SI group. The RPE65 expression significantly decreased in the SI group compared with the CONT and CO groups. A significant increase in RPE65 expression level and a significant decrease in caspase-3 expression level were found in the SI + TQ group compared with the SI group. The increase in HO-1 expression level was significantly higher in the TQ treatment groups, particularly in the SI + TQ group. In the SI and TQ + SI groups, the ONL thickness significantly decreased with a significant increase in caspase-3 expression compared to the CONT and CO groups. In the treatment groups, decreased organelle damage was observed on electron microscopy. In the SI + TQ group, the disulfide/native thiol and disulfide/total thiol ratios were significantly lower than all other groups, while the native/total thiol ratio was significantly higher than the other experimental groups. CONCLUSIONS: The present study provides evidence that continuous TQ treatment can increase HO-1 and RPE65 expression and decrease apoptosis (caspase-3 levels), thereby preserving the retina at the ultrastructural level. Moreover, TQ administration can maintain thiol/disulfide homeostasis in SI-induced retinal degeneration-modelled rats.

13.
Front Biosci (Landmark Ed) ; 29(7): 260, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39082341

ABSTRACT

Retinal degeneration (RD) is a group of chronic blinding diseases characterised by progressive retinal cell death. As the disease progresses, vision deteriorates due to retinal cell death and impaired retinal integrity, eventually leading to complete loss of vision. Therefore, the function and environmental homeostasis of the retina have an important impact on the pathogenesis and treatment of RD. Ubiquitination, as a complex post-translational modification process, plays an essential role in maintaining retinal homeostasis and normal function. It covalently combines ubiquitin with protein through a series of enzyme-mediated reactions, and participates in cell processes such as gene transcription, cell cycle process, DNA repair, apoptosis and immune response. At the same time, it plays a central role in protein degradation. There are two major protein degradation systems in eukaryotic cells: the ubiquitin-proteasome system and the autophagy-lysosomal system. The protein degradation pathway maintains retinal protein homeostasis by reducing abnormal protein accumulation in the retina through two modes of degradation. Either dysregulation of ubiquitination or disruption of protein homeostasis may lead to the development of RD. This article aims to comprehensively review recent research progress on ubiquitin-related genes, proteins and protein homeostasis in the pathogenesis of RD, and to summarize the potential targeted therapy strategies for it. The review is expected to provide valuable guidance for further development and application of ubiquitination in RD.


Subject(s)
Proteostasis , Retinal Degeneration , Ubiquitination , Humans , Retinal Degeneration/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Retina/metabolism , Retina/pathology , Autophagy , Proteolysis
14.
J Biol Chem ; 300(8): 107569, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009342

ABSTRACT

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.

15.
Ophthalmol Sci ; 4(5): 100483, 2024.
Article in English | MEDLINE | ID: mdl-38881603

ABSTRACT

Purpose: To define the clinical characteristics of centrosomal protein 290 (CEP290)-associated inherited retinal degeneration (IRD) and determine which assessments may provide reliable endpoints in future interventional trials. Design: Participants in this natural history study were enrolled into 2 best-corrected visual acuity (BCVA) cohorts: light perception to > 1.0 logarithm of the minimum angle of resolution (logMAR) and 1.0 logMAR to 0.4 logMAR. Each comprised 4 age cohorts (3-5, 6-11, 12-17, and ≥ 18 years). Participants: Patients with CEP290-associated IRD caused by the intron 26 c.2991+1655A>G mutation and BCVA ranging from light perception to 0.4 logMAR. Methods: Best-corrected visual acuity, full-field stimulus threshold (FST) sensitivity, Ora-Visual Navigation Challenge (Ora-VNC) composite score, and OCT-outer nuclear layer (OCT-ONL) average thickness were assessed at screening, baseline, 3 months, 6 months, and 12 months. Main Outcome Measures: Best-corrected visual acuity, FST sensitivity, Ora-VNC composite score, and OCT-ONL average thickness. Results: Twenty-six participants were included in this analysis. Nineteen were female. All participants were White and 4 reported Hispanic ethnicity. At screening, 13 of 16 adult and 9 of 10 pediatric participants had BCVA > 1.0 logMAR. Baseline BCVA was variable (median [range] = 2.0 [0.5, 3.9] logMAR) and was uncorrelated with age, as were VNC composite score, FST sensitivity, and OCT-ONL average thickness. Mean (95% confidence interval [CI]) test-retest variability was -0.04 (-0.09, 0.01) logMAR for BCVA (n = 25); 0.6 (-0.1, 1.3) for VNC composite score (n = 18); and 0.10 (-0.07, 0.27) log cd.s/m2 for red FST (n = 14). A greater than expected test-retest variability (5 [0, 10] µm, n = 14) was observed for OCT-ONL average thickness as nystagmus impacted ability to repeat measures at the same retinal location. Functional assessments were stable over 12 months. Mean (95% CI) change from baseline was 0.06 (-0.17, 0.29) logMAR for BCVA (n = 23); -0.1 (-1.2, 1.0) for VNC composite score (n = 21); and -0.15 (-0.43, 0.14) log cd.s/m2 for red FST (n = 16). Conclusions: Vision was stable over 12 months. Best-corrected visual acuity, FST, and VNC composite score are potentially viable endpoints for future studies in CEP290-associated IRD. Repeatability of OCT measures poses challenges for quantifying anatomical changes in this population. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

16.
Front Mol Neurosci ; 17: 1398447, 2024.
Article in English | MEDLINE | ID: mdl-38854587

ABSTRACT

The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.

17.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920696

ABSTRACT

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.


Subject(s)
Autophagy , Choroideremia , Induced Pluripotent Stem Cells , Retinal Pigment Epithelium , rab GTP-Binding Proteins , Humans , Adaptor Proteins, Signal Transducing , Choroideremia/pathology , Choroideremia/genetics , Choroideremia/metabolism , Induced Pluripotent Stem Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Models, Biological , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction
18.
Sci Rep ; 14(1): 14332, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906973

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.


Subject(s)
Ataxin-7 , Disease Models, Animal , Peptides , Spinocerebellar Ataxias , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/metabolism , Ataxin-7/genetics , Ataxin-7/metabolism , Humans , Peptides/metabolism , Peptides/genetics , Drosophila/genetics , Animals, Genetically Modified , Disease Progression , Drosophila melanogaster/genetics , Retina/metabolism , Retina/pathology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
19.
Article in English | MEDLINE | ID: mdl-38847892

ABSTRACT

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

20.
Diagnostics (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928710

ABSTRACT

The aim of the study was to evaluate the local status of the sclera in lattice retinal degeneration. Patients with lattice degeneration, snail-track degeneration, or horseshoe retinal breaks were included. One lesion of a single eye in each patient was captured with cross-sectional optical coherence tomography (OCT) along and across the greatest lesion dimension. The maximum height of scleral indentation was measured and compared between different lesion types and between lattice lesions with and without retinal breakage or local detachment. The correlation between the maximum height of the scleral indentation of lattice lesions and the age of the patients was calculated. Seventy-five eyes of 75 patients (44.4 ± 14.7 years; 35 males and 30 females) were included. OCT showed variable local scleral indentation in 52 out of 55 (94.5%) lattice lesions, in five out of nine (55.5%) snail-tack lesions, and in three out of eleven (27.3%) horseshoe breaks. The maximum scleral indentation within lattice lesions, snail-tack lesions, and horseshoe breaks was 227.2 ± 111.3, 22.0 ± 49.2, and 88.5 ± 48.4 µm, respectively (p < 0.001 for snail-tack lesions and horseshoe breaks compared to lattice lesions). Lattice lesions with retinal breaks and/or local retinal detachment had statistically significantly lower scleral indentation than those without (p = 0.01). The height of the scleral indentation of lattice lesions was positively correlated with patient age (r = 0.51, p = 0.03). In conclusion, scleral indentation is one of the hallmarks of lattice retinal degeneration and may be associated with a reduced risk of rhegmatogenous retinal detachment.

SELECTION OF CITATIONS
SEARCH DETAIL