Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.606
Filter
1.
Lasers Med Sci ; 39(1): 255, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388001

ABSTRACT

The research on actinobacteria isolated from traditional medicinal plants is limited. Here, four new Streptomyces isolates (Ha1, Pp1, UzK and UzM) were obtained from the rhizospheres of Helianthus annuus, Pongamia pinnata and Ziziphus mauritiana, frequently utilized in Indian traditional medicine. The Streptomyces isolates aqueous extracts were studied alone against the growth of the Cryptococcus neoformans H99 reference strain, the fluconazole-tolerant T1-5796 and 89-610 strains, three histone deacetylase (HDAC) genes mutant strains, C. gattii NIH198, Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis to determine minimum inhibitory concentration (MIC). Next, the extracts were employed in combination with aluminium-phthalocyanine chloride nanoemulsion-mediated photodynamic therapy to evaluate a possible interaction. We demonstrated that the C. neoformans T1-5796 fluconazole-tolerant strain was more severely inhibited by the Pp1 isolate extract (MIC: 6 mg mL-1) than H99, which was not inhibited. Growth inhibition of the HDAC null mutants was more prominent for the extract of the UzM isolate, showing inhibition at 2 mg mL-1. The UzM extract was also the most effective in hindering the Candida species proliferation, with MIC values ranging from 10 to 40 mg mL-1. The four Streptomyces extracts, especially UzK and UzM, significantly enhanced the antifungal effect of the photodynamic therapy. Our results indicate these Streptomyces isolates as sources of novel metabolites which could potentiate the effect of photodynamic therapy in controlling yeasts superficial infections.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Photochemotherapy , Streptomyces , Photochemotherapy/methods , Antifungal Agents/pharmacology , Candida/drug effects , Cryptococcus/drug effects , Humans , Photosensitizing Agents/pharmacology
2.
Front Plant Sci ; 15: 1461893, 2024.
Article in English | MEDLINE | ID: mdl-39363923

ABSTRACT

Introduction: Root exudates act as the "language" of plant-soil communication, facilitating crucial interactions, information exchange, and energy transfer between plants and soil. The interactions facilitated by root exudates between plants and microorganisms in the rhizosphere are crucial for nutrient uptake and stress resilience in plants. However, the mechanism underlying the interaction between root exudates and rhizosphere microorganisms in desert plants under drought conditions remains unclear, especially among closely related species. Methods: To reveal the ecological strategies employed by the genus Haloxylon in different habitats. Using DNA extraction and sequencing and UPLC-Q-Tof/MS methods, we studied root exudates and soil microorganisms from two closely related species, Haloxylon ammodendron (HA) and Haloxylon persicum (HP), to assess differences in their root exudates, soil microbial composition, and interactions. Results: Significant differences were found in soil properties and root traits between the two species, among which soil water content (SWC) and soil organic carbon (SOC) in rhizosphere and bulk soils (P < 0.05). While the metabolite classification of root exudates was similar, their components varied, with terpenoids being the main differential metabolites. Soil microbial structure and diversity also exhibited significant differences, with distinct key species in the network and differential functional processes mainly related to nitrogen and carbon cycles. Strong correlations were observed between root exudate-mediated root traits, soil microorganisms, and soil properties, although the complex interactions differed between the two closely relative species. The primary metabolites found in the network of HA include sugars and fatty acids, while HP relies on secondary metabolites, steroids and terpenoids. Discussion: These findings suggest that root exudates are key in shaping rhizosphere microbial communities, increasing microbial functionality, fostering symbiotic relationships with hosts, and bolstering the resilience of plants to environmental stress.

3.
Sci Total Environ ; 954: 176566, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362566

ABSTRACT

Trichloroethylene (TCE) poses a significant environmental threat in groundwater and soil, necessitating effective remediation strategies. Phytoremediation offers a cost-effective and environmentally friendly approach to remediation. However, the mechanisms governing plant uptake, volatilisation, and degradation of TCE remain poorly understood. This review explores the mechanisms of TCE phytoremediation, metabolic pathways, and influencing factors, emphasizing future research directions to improve the understanding of TCE phytoremediation. The results showed that although the proportion of TCE phytovolatilisation is limited, it is important at sites chronically contaminated with TCE. The rhizosphere is a key microzone for pollutant redox reactions that significantly enhance its effectiveness when its characteristics are fully utilised and manipulated through reinforcement. Future research should focus on manipulating microbial communities through methods such as the application of endophytic bacteria and genetic modification. However, practical applications are in their infancy and further investigation is needed. Furthermore, many findings are based on non-uniform parameters or unstandardised methods, making them difficult to compare. Therefore, future studies should provide more standardised experimental parameters and employ accurate and standardised methods to develop suitable prediction models, enhancing data comparability and deepening our understanding of plant detoxification mechanisms.

4.
J Agric Food Chem ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39389770

ABSTRACT

Arbuscular mycorrhizal (AM) fungi can enhance plant uptake of phosphorus (P) and potassium (K), but it is not yet clear whether rhizosphere bacteria can enhance the ability of AM fungi to acquire insoluble P and K from the soil. Here, pot experiments confirmed that AM fungus-promoted insoluble P and K uptake by plants requires rhizosphere bacteria. The changes of rhizosphere bacterial communities associated with AM fungi were explored by 16S rRNA amplicon sequencing and metagenomic sequencing. Five core bacteria genera identified were involved in P and K cycles. Synthetic community (SynCom) inoculation revealed that SynCom increased soil available P and K and its coinoculation with AM fungi increased P and K concentration in the plants. This study revealed that AM fungi interact with rhizosphere bacteria and promote insoluble P and K acquisition, which provided a foundation for the application of AM fungal-bacterial biofertilizers and was beneficial for the sustainable development of agriculture.

5.
Front Microbiol ; 15: 1458470, 2024.
Article in English | MEDLINE | ID: mdl-39376702

ABSTRACT

The mulch film (MF) management model of the agricultural field affects the physical and chemical properties of soil (PCPS) and the structure of the microorganism community; however, studies on the relationship between the rhizosphere microorganism community structure and the thickness of MF are still limited. To understand the interactions among the MF thickness, PCPS, and rhizosphere microorganism, a study was conducted by using an integrated metagenomic strategy, where tobacco rhizosphere soil was treated with four commonly representative and used thicknesses of MFs (0.004, 0.006, 0.008, and 0.010 mm) in Yunnan laterite. The results showed that agronomic traits such as the tobacco plant height (TPH), leaf number (LN), fresh leaf weight (FLW), and dry leaf weight (DLW) were significantly (p < 0.01) improved in the field mulched with the thickest film (0.010 mm) compared with the exposed field (CK), and there was a 6.81 and 5.54% increase in the FLW and TPH, separately. The correlation analyses revealed a significant positive correlation of the MF thickness with the soil water content (SWC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP; all p < 0.01), while the MF thickness was negatively correlated with the soil temperature (ST; p < 0.01). In addition, the community structure of the rhizosphere soil bacteria was significantly changed overall by the MF thickness, which also interfered with the function of the rhizosphere soil bacteria. The correlation analyses also showed that the abundance of Bradyrhizobium and Nitrospira was positively correlated with the MF thickness, while the abundance of Sphinsinomonas and Massilia was negatively correlated with it. This indicated that with the increase of the MF thickness, the ability of the rhizosphere soil to utilize N and remove harmful molecules was strengthened, while the capacity of the rhizosphere soil to degrade pollutants was greatly reduced. These findings provide additional insights into the potential risks of the application of different thicknesses of MFs, particularly concerning the PCPS and soil microbial communities.

6.
Front Microbiol ; 15: 1473099, 2024.
Article in English | MEDLINE | ID: mdl-39376706

ABSTRACT

Introduction: The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods: Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results: Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion: Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.

7.
Heliyon ; 10(18): e37740, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39381237

ABSTRACT

Many natural selenium (Se)-rich rice plants are being polluted by cadmium (Cd). In this study, for reducing Cd concentrations in rice grains while maintaining Se concentrations, the effects of different exogenous organic matters (OMs), such as humic acid (HA), cow manure (CM), and vermicompost (VC), on Se and Cd uptake in rice growing in natural Se-Cd-rich paddy soils were investigated by pot experiments. The Se and Cd concentrations in the soil solution, their species in the soil, and their concentrations and translocations in rice tissues were determined. Results showed that different exogenous OMs exhibited distinct percentage changes in Se and Cd levels in rice grains with amplitudes of -19.42 % and -56.90 % (significant, p < 0.05) in the HA treatments, +10.79 % and -1.72 % in the CM treatments, and +15.83 % and -15.52 % in the VC treatments, respectively. Correlation analysis showed that the concentrations of Se and Cd in rice grains might be primarily influenced by their concentrations in the soil solution, rather than the Se/Cd molar ratios in the soil solution or their translocations in rice tissues. HA decreased Se and Cd bioavailability in soil by increasing HA-bound Se and residual Cd, respectively. Meanwhile, HA increased soil solution pH, which was negative for Cd bioavailability but positive for Se bioavailability. This additive effect made HA lowered Cd concentration more than Se concentration in both soil solution and grain. CM and VC did not have this additive effect and thus have limited effects on grain Se and Cd concentrations. In addition, according to grain Se and Cd concentrations, to prioritize reducing Cd in rice, use HA; to prioritize increasing Se in rice, use VC. This study enhances the understanding of Se and Cd uptake mechanisms in rice with the applications of various OMs and offers potential remediation methods for Se-Cd-rich paddy soils.

8.
Microbiol Spectr ; : e0096624, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382299

ABSTRACT

The rhizosphere soil properties and microbial communities of Lilium tsingtauense, an endangered wild plant, have not been examined in previous studies. Here, we characterized spatial variation in soil properties and microbial communities in the rhizosphere of L. tsingtauense. We measured the abundance of L. tsingtauense at different altitudes and collected rhizosphere and bulk soils at three representative altitudes. The results showed that L. tsingtauense was more abundant, and the rhizosphere soil was richer in nitrogen, phosphorus, potassium, water content, and organic matter and more acidic at high altitudes than at lower altitudes. The diversity and richness of rhizosphere bacteria and fungi increased with altitude and were higher in rhizosphere soil than in bulk soil. In addition, ectomycorrhizal fungi, endophytic fungi, and nitrogen-fixing bacteria were more abundant, and plant-pathogenic fungi were less abundant at high altitudes. Co-occurrence network analysis identified four key phyla (Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota) in the microbial communities. We identified a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, and Chaetomiaceae) and rhizosphere soil metabolites (phosphatidylcholine and phosphatidylserine) that are crucial for the survival of L. tsingtauense. Correlation analysis and random forest analysis showed that some environmental factors were closely related to the rhizosphere soil microbial community and played an important role in predicting the distribution and growth status of L. tsingtauense. In sum, the results of this study revealed altitudinal variation in the rhizosphere microbial communities of L. tsingtauense and the factors driving this variation. Our findings also have implications for habitat restoration and the conservation of this species. IMPORTANCE: Our study highlighted the importance of the rhizosphere microbial community of the endangered plant L. tsingtauense. We found that soil pH plays an important role in the survival of L. tsingtauense. Our results demonstrated that a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, Aspergillaceae, and Chaetomiaceae) and soil metabolites (phosphatidylcholine and phosphatidylserine) could be essential indicators for L. tsingtauense habitat. We also found that some environmental factors play an important role in shaping rhizosphere microbial community structure. Collectively, these results provided new insights into the altitudinal distribution of L. tsingtauense and highlight the importance of microbial communities in their growth.

9.
Environ Pollut ; 363(Pt 1): 125059, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39362621

ABSTRACT

Acid mine drainage (AMD) is considered as one of the most important global environmental challenges. Therefore, understanding the impact of AMD on the diversity of microbial communities associated with native plants is important for phytoremediation. In this study, the community assembly and microbial diversity associated with native plants growing along an AMD impact gradient was investigated using metabarcoding and high throughput iChip technique. The study revealed that across both domains of bacteria and fungi, richness and species diversity decreased according to AMD impact. Bacterial species diversity was more stratified according to the pH gradient than fungi, and the AMD impact on the plant-associated microbial diversity decreased towards the plant roots. The microbial community composition of the undisturbed site was significantly different from the AMD impacted sites, and the communities in the AMD impacted sites were further stratified according to the degree of impact. The overall microbial diversity was mediated by the AMD impact, niche differences and plant species differences. Dispersal limitation was the most important community assembly process in the undisturbed site, while the homogenous selection of Burkholderia, Actinospica, Puia and Bradyrhizobium increased along the AMD impact gradient. Differential abundance analysis further revealed that Umbelopsis, Burkholderia and Sphingomonas were among the biomarkers of the AMD impacted sites. Several strains of some of these responsive genera were subsequently isolated using the iChip. Overall, this study presents novel insight into the ecology of plant-associated microbial communities that are relevant for environmental monitoring and for enhancing the revegetation of AMD impacted sites.

10.
J Sci Food Agric ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390738

ABSTRACT

BACKGROUND: Reductive soil disinfestation (RSD), which involves creating anaerobic conditions and incorporating large amounts of organic materials into the soil, has been identified as a reliable strategy for reducing soilborne diseases in successive cropping systems. However, limited research exists on the connections between soil microorganism composition and plant diseases under various types of organic material applications. This study aimed to evaluate the effects of distinct RSD strategies (control without soil amendment; RSD with 1500 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder; RSD with 3000 kg ha-1 molasses powder and 37.5-41.3 kg ha-1 microbial agent) on the plant disease index, bacterial community composition and network structure in rhizosphere soil. RESULTS: RSD treatments significantly reduced the occurrence of black shank disease in tobacco and increased soil bacterial diversity. High amounts of molasses powder in RSD treatments further enhanced disease inhibition and reduced fungal abundance and Shannon index. RSD also increased the relative abundance of bacterial phylum Firmicutes and fungal phylum Ascomycota, while decreasing the relative abundance of bacterial phyla Chloroflexi and Acidobacteriota and fungal phylum Basidiomycota in rhizosphere soil. A multiple regression model identified bacterial positive cohesion as the primary factor influencing the plant disease index, with a greater impact than bacterial negative cohesion and community stability. The competition among beneficial bacteria for creating a healthy rhizosphere environment is likely a key factor in the success of RSD in reducing plant disease risk. CONCLUSION: RSD, especially with higher rates of molasses powder, is a viable strategy for controlling black shank disease in tobacco and promoting soil health by fostering beneficial microbial communities. This study provides guidelines for soil management and plant disease prevention. © 2024 Society of Chemical Industry.

11.
Microb Ecol ; 87(1): 127, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392487

ABSTRACT

The plant mycobiome plays a crucial role in the host life cycle, influencing both healthy and diseased states, and is essential for plant tolerance to drought. In this study, we used ITS metabarcoding to investigate the fungal community of the drought-resistant plant Malva sylvestris L. in Morocco along a gradient of precipitation, encompassing subhumid and semi-arid environments. We sampled three biotopes: rhizosphere, bulk soil, and root endosphere. Our findings revealed an absence of beta-diversity differences between bulk soil and rhizosphere, indicating that the plant does not selectively influence its rhizosphere mycobiome. Additionally, ASVs belonging to the genus Alternaria represented up to 30% of reads in the plant's roots and correlated with drought (p = 0.006), indicating a potential role for this fungal genus in mitigating drought, possibly as part of the dark septate endophyte group. Root staining and microscopic observation revealed extensive colonization by fungal hyphae and microsclerotia-like structures. Furthermore, ASVs identified as Fusarium equiseti were also correlated with low precipitation and recognized as a hub taxon in the roots. However, it remains uncertain whether this species is pathogenic or beneficial to the plant. These insights contribute to our understanding of the plant mycobiome's role in drought tolerance and highlight the importance of specific fungal taxa in supporting plant health under varying environmental conditions. Future research should focus on characterizing these taxa's functional roles and their interactions with the host plant to further elucidate their contributions to drought resistance.


Subject(s)
Alternaria , Droughts , Fusarium , Plant Roots , Rain , Morocco , Fusarium/physiology , Fusarium/isolation & purification , Fusarium/classification , Alternaria/physiology , Alternaria/classification , Plant Roots/microbiology , Soil Microbiology , Mycobiome , Rhizosphere
12.
BMC Microbiol ; 24(1): 405, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394553

ABSTRACT

BACKGROUND: Microorganisms play pivotal roles in seagrass ecosystems by facilitating material and elemental cycling as well as energy flux. However, our understanding of how seasonal factors and seagrass presence influence the assembly of bacterial communities in seagrass bed sediments is limited. Employing high-throughput sequencing techniques, this study investigates and characterizes bacterial communities in the rhizosphere of eelgrass (Zostera marina) and the bulk sediments across different seasons. The research elucidates information on the significance of seasonal variations and seagrass presence in impacting the microbial communities associated with Zostera marina. RESULTS: The results indicate that seasonal variations have a more significant impact on the bacterial community in seagrass bed sediments than the presence of seagrass. We observed that the assembly of bacterial communities in bulk sediments primarily occurs through stochastic processes. However, the presence of seagrass leading to a transition from stochastic to deterministic processes in bacterial community assembly. This shift further impacts the complexity and stability of the bacterial co-occurrence network. Through LEfSe analysis, different candidate biomarkers were identified in the bacterial communities of rhizosphere sediments in different seasons, indicating that seagrass may possess adaptive capabilities to the environment during different stages of growth and development. CONCLUSIONS: Seasonal variations play a significant role in shaping these communities, while seagrass presence influences the assembly processes and stability of the bacterial community. These insights will provide valuable information for the ecological conservation of seagrass beds.


Subject(s)
Bacteria , Geologic Sediments , Microbiota , Rhizosphere , Seasons , Zosteraceae , Zosteraceae/microbiology , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing , Ecosystem , Phylogeny
13.
Environ Res ; 263(Pt 2): 120090, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374754

ABSTRACT

Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.

14.
Appl Environ Microbiol ; : e0102624, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248464

ABSTRACT

Interactions between plants and soil microbial communities that benefit plant growth and enhance nutrient acquisition are driven by the selective release of metabolites from plant roots, or root exudation. To investigate these plant-microbe interactions, we developed a photoaffinity probe based on sorgoleone (sorgoleone diazirine alkyne for photoaffinity labeling, SoDA-PAL), a hydrophobic secondary metabolite and allelochemical produced in Sorghum bicolor root exudates. We applied SoDA-PAL to the identification of sorgoleone-binding proteins in Acinetobacter pittii SO1, a potential plant growth-promoting microbe isolated from sorghum rhizosphere soil. Competitive photoaffinity labeling of A. pittii whole cell lysates with SoDA-PAL identified 137 statistically enriched proteins, including putative transporters, transcriptional regulators, and a subset of proteins with predicted enzymatic functions. We performed computational protein modeling and docking with sorgoleone to prioritize candidates for experimental validation and then confirmed binding of sorgoleone to four of these proteins in vitro: the α/ß fold hydrolase SrgB (OH685_09420), a fumarylacetoacetase (OH685_02300), a lysophospholipase (OH685_14215), and an unannotated hypothetical protein (OH685_18625). Our application of this specialized sorgoleone-based probe coupled with structural bioinformatics streamlines the identification of microbial proteins involved in metabolite recognition, metabolism, and toxicity, widening our understanding of the range of cellular pathways that can be affected by a plant secondary metabolite.IMPORTANCEHere, we demonstrate that a photoaffinity-based chemical probe modeled after sorgoleone, an important secondary metabolite released by sorghum roots, can be used to identify microbial proteins that directly interact with sorgoleone. We applied this probe to the sorghum-associated bacterium Acinetobacter pittii and showed that probe labeling is dose-dependent and sensitive to competition with purified sorgoleone. Coupling the probe with proteomics and computational analysis facilitated the identification of putative sorgoleone binders, including a protein implicated in a conserved pathway essential for sorgoleone catabolism. We anticipate that discoveries seeded by this workflow will expand our understanding of the molecular mechanisms by which specific metabolites in root exudates shape the sorghum rhizosphere microbiome.

15.
Front Plant Sci ; 15: 1438771, 2024.
Article in English | MEDLINE | ID: mdl-39268000

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are universally distributed in soils, including saline soils, and can form mycorrhizal symbiosis with the vast majority of higher plants. This symbiosis can reduce soil salinity and influence plant growth and development by improving nutrient uptake, increasing plant antioxidant enzyme activity, and regulating hormone levels. In this study, rhizosphere soil from eight plants in the Songnen saline-alkaline grassland was used to isolate, characterize, and screen the indigenous advantageous AMF. The promoting effect of AMF on alfalfa (Medicago sativa L.) under salt treatment was also investigated. The findings showed that 40 species of AMF in six genera were identified by high-throughput sequencing. Glomus mosseae (G.m) and Glomus etunicatum (G.e) are the dominant species in saline ecosystems of northern China. Alfalfa inoculated with Glomus mosseae and Glomus etunicatum under different salt concentrations could be infested and form a symbiotic system. The mycorrhizal colonization rate and mycorrhizal dependence of G.m inoculation were significantly higher than those of G.e inoculation. With increasing salt concentration, inoculation increased alfalfa plant height, fresh weight, chlorophyll content, proline (Pro), soluble sugar (SS), soluble protein (SP), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity while decreasing the malondialdehyde (MDA) content and superoxide anion production rate. The results highlight that inoculation with G.m and G.e effectively alleviated salinity stress, with G.m inoculation having a significant influence on salt resistance in alfalfa. AMF might play a key role in alfalfa growth and survival under harsh salt conditions.

16.
Front Microbiol ; 15: 1457854, 2024.
Article in English | MEDLINE | ID: mdl-39268528

ABSTRACT

Introduction: Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods: Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion: K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.

17.
Antonie Van Leeuwenhoek ; 118(1): 2, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269614

ABSTRACT

A novel gram-stain-positive, short rod, aerobic, non-motile and non-spore-forming actinobacterial strain, designated GXG1230T was isolated from the rhizosphere soil of a coastal mangrove forest in Beihai city, Guangxi Zhuang Autonomous Region, PR China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GXG1230T was affiliated with the genus Microbacterium. Additionally, it demonstrated a high degree of similarity to Microbacterium paludicola US15T (97.9%) and Microbacterium marinilacus YM11-607T (97.3%). Chemotaxonomic characteristics showed that the whole-cell sugars were glucose, xylose, rhamnose and galactose. Menaquinones MK-11 and MK-12 were detected as respiratory quinones. Lysine was found in the peptidoglycan hydrolysate and the polar lipids were diphosphatidylglycerol, one phospholipid and two unidentified glycolipid. The major fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The strain GXG1230T exhibited a genomic DNA G + C content of 71.7%. Furthermore, the average nucleotide identity values of GXG1230T with the reference strains were 75.4% and 81.9%, respectively, while the digital DNA-DNA hybridization values were 20.1% and 25.0%. Based on physiological, chemotaxonomic and phylogenetic information, strain GXG1230T is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium rhizophilus sp.nov is proposed, with GXG1230T (= MCCC 1K09302T = KCTC 59252T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , DNA, Bacterial/genetics , Microbacterium/metabolism , Indoleacetic Acids/metabolism , China , Sequence Analysis, DNA
18.
Evolution ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39277541

ABSTRACT

While biotic interactions often impose selection, species and popula- tions vary in whether they are locally adapted to biotic interactions. Evo- lutionary theory predicts that environmental conditions drive this variable local adaptation by altering the fitness impacts of species interactions. To investigate the influence of an environmental gradient on adaptation be- tween a plant and its associated rhizosphere biota, we cross-combined teosinte (Zea mays ssp. mexicana) and rhizosphere biota collected across a gradient of decreasing temperature, precipitation, and nutrients in a greenhouse common garden experiment. We measured both fitness and phenotypes expected to be influenced by biota, including concentrations of nutrients in leaves. Independent, main effects of teosinte and biota source explained most variation in teosinte fitness and traits. For example, biota from warmer sites provided population-independent fitness benefits across teosinte hosts. Effects of biota that depended on teosinte genotype were often not specific to their local hosts, and most traits had similar relation- ships to fitness across biota treatments. However, we found weak patterns of local adaptation between teosinte and biota from colder sites, suggest- ing environmental gradients may alter the importance of local adaptation in teosinte-biota interactions, as evolutionary theory predicts.

19.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273604

ABSTRACT

The rhizosphere is the hotspot for microbial enzyme activities and contributes to carbon cycling. Precipitation is an important component of global climate change that can profoundly alter belowground microbial communities. However, the impact of precipitation on conifer rhizospheric microbial populations has not been investigated in detail. In the present study, using high-throughput amplicon sequencing, we investigated the impact of precipitation on the rhizospheric soil microbial communities in two Norway Spruce clonal seed orchards, Lipová Lhota (L-site) and Prenet (P-site). P-site has received nearly double the precipitation than L-site for the last three decades. P-site documented higher soil water content with a significantly higher abundance of Aluminium (Al), Iron (Fe), Phosphorous (P), and Sulphur (S) than L-site. Rhizospheric soil metabolite profiling revealed an increased abundance of acids, carbohydrates, fatty acids, and alcohols in P-site. There was variance in the relative abundance of distinct microbiomes between the sites. A higher abundance of Proteobacteria, Acidobacteriota, Ascomycota, and Mortiellomycota was observed in P-site receiving high precipitation, while Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadota, and Basidiomycota were prevalent in L-site. The higher clustering coefficient of the microbial network in P-site suggested that the microbial community structure is highly interconnected and tends to cluster closely. The current study unveils the impact of precipitation variations on the spruce rhizospheric microbial association and opens new avenues for understanding the impact of global change on conifer rizospheric microbial associations.


Subject(s)
Microbiota , Picea , Rhizosphere , Soil Microbiology , Picea/microbiology , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Soil/chemistry , Rain , Seeds/growth & development , Seeds/microbiology , Climate Change
20.
Plants (Basel) ; 13(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273846

ABSTRACT

The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in cbbL and cbbS, and phosphoribulokinase (PRK), encoded by cbbP. These genes are often found in cbb operons, regulated by the LysR-type regulator CbbR. In Bradyrhizobium, pertaining to this order and bearing photosynthetic and non-photosynthetic species, the number of cbbL and cbbS copies varies, for example: zero in B. manausense, one in B. diazoefficiens, two in B. japonicum, and three in Bradyrhizobium sp. BTAi. Few studies addressed the role of CBB in Bradyrhizobium spp. symbiosis with leguminous plants. To investigate the horizontal transfer of the cbb operon among Hyphomicrobiales, we compared phylogenetic trees for concatenated cbbL-cbbP-cbbR and housekeeping genes (atpD-gyrB-recA-rpoB-rpoD). The distribution was consistent, indicating no horizontal transfer of the cbb operon in Hyphomicrobiales. We constructed a ΔcbbLS mutant in B. diazoefficiens, which lost most of the coding sequence of cbbL and has a frameshift creating a stop codon at the N-terminus of cbbS. This mutant nodulated normally but had reduced competitiveness for nodulation and long-term adhesion to soybean (Glycine max (L.) Merr.) roots, indicating a CBB requirement for colonizing soybean rhizosphere.

SELECTION OF CITATIONS
SEARCH DETAIL