Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 473: 134587, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772107

ABSTRACT

One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.


Subject(s)
Arsenic , Oryza , Plant Roots , Rhizosphere , Soil Microbiology , Soil Pollutants , Oryza/metabolism , Oryza/microbiology , Arsenic/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Availability , Microbiota
3.
Front Plant Sci ; 15: 1344205, 2024.
Article in English | MEDLINE | ID: mdl-38645395

ABSTRACT

Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.

4.
Sci Total Environ ; 927: 172424, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614348

ABSTRACT

Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.


Subject(s)
Mycorrhizae , Nitrogen , Plant Roots , Plant Roots/metabolism , Nitrogen/metabolism , Mycorrhizae/physiology , Soil/chemistry , Forests , China , Symbiosis , Sasa
5.
Arch Microbiol ; 206(5): 203, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573536

ABSTRACT

The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.


Subject(s)
Carbon-Carbon Lyases , Fabaceae , Rhizobium , Symbiosis , Rhizobium/genetics , Pisum sativum , Bacteria , Endophytes/genetics , Vegetables , Heat-Shock Response
6.
Biology (Basel) ; 13(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38392313

ABSTRACT

Soil-beneficial microbes in the rhizosphere play important roles in improving plant growth and health. Root exudates play key roles in plant-microbe interactions and rhizobacterial colonization. This review describes the factors influencing the dynamic interactions between root exudates and the soil microbiome in the rhizosphere, including plant genotype, plant development, and environmental abiotic and biotic factors. We also discuss the roles of specific metabolic mechanisms, regulators, and signals of beneficial soil bacteria in terms of colonization ability. We highlight the latest research progress on the roles of root exudates in regulating beneficial rhizobacterial colonization. Organic acids, amino acids, sugars, sugar alcohols, flavonoids, phenolic compounds, volatiles, and other secondary metabolites are discussed in detail. Finally, we propose future research objectives that will help us better understand the role of root exudates in root colonization by rhizobacteria and promote the sustainable development of agriculture and forestry.

7.
Plant Sci ; 339: 111919, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992897

ABSTRACT

Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.


Subject(s)
Hordeum , Iron , Humans , Iron/metabolism , Zinc/metabolism , Hordeum/genetics , Hordeum/metabolism , Copper/metabolism , Micronutrients/metabolism , Plant Roots/metabolism
8.
Plant Sci ; 340: 111954, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38092267

ABSTRACT

Being sessile, plants encounter various biotic and abiotic threats in their life cycle. To minimize the damages caused by such threats, plants have acquired sophisticated response mechanisms. One major such response includes memorizing the encountered stimuli in the form of a metabolite, hormone, protein, or epigenetic marks. All of these individually as well as together, facilitate effective transcriptional and post-transcriptional responses upon encountering the stress episode for a second time during the life cycle and in some instances even in the future generations. This review attempts to highlight the recent advances in the area of plant memory. A detailed understanding of plant memory has the potential to offer solutions for developing climate-resilient crops for sustainable agriculture.


Subject(s)
Agriculture , Crops, Agricultural , Crops, Agricultural/genetics , Epigenomics , Phenotype , Stress, Physiological
9.
Plant Physiol Biochem ; 206: 108290, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150841

ABSTRACT

In the rhizosphere, the activities within all processes and functions are primarily influenced by plant roots, microorganisms present in the rhizosphere, and the interactions between roots and microorganisms. The rhizosphere, a dynamic zone surrounding the roots, provides an ideal environment for a diverse microbial community, which significantly shapes plant growth and development. Microbial activity in the rhizosphere can promote plant growth by increasing nutrient availability, influencing plant hormonal signaling, and repelling or outcompeting pathogenic microbial strains. Understanding the associations between plant roots and soil microorganisms has the potential to revolutionize crop yields, improve productivity, minimize reliance on chemical fertilizers, and promote sustainable plant growth technologies. The rhizosphere microbiome could play a vital role in the next green revolution and contribute to sustainable and eco-friendly agriculture. However, there are still knowledge gaps concerning plant root-environment interactions, particularly regarding roots and microorganisms. Advances in metabolomics have helped to understand the chemical communication between plants and soil biota, yet challenges persist. This article provides an overview of the latest advancements in comprehending the communication and interplay between plant roots and microbes, which have been shown to impact crucial factors such as plant growth, gene expression, nutrient absorption, pest and disease resistance, and the alleviation of abiotic stress. By improving these aspects, sustainable agriculture practices can be implemented to increase the overall productivity of plant ecosystems.


Subject(s)
Microbiota , Rhizosphere , Plant Roots , Soil Microbiology , Agriculture , Soil/chemistry , Plants
10.
Mar Pollut Bull ; 199: 115940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150979

ABSTRACT

In the recent study, we investigated the seasonal variations in root exudation and microbial community structure in the rhizosphere of seagrass Enhalus acoroides in the South China Sea. We found that the quantity and quality of root exudates varied seasonally, with higher exudation rates and more bioavailable dissolved organic matter (DOM) during the seedling and vegetative stages in spring and summer. Using Illumina NovaSeq sequencing, we analyzed bacterial and fungal communities and discovered that microbial diversity and composition were influenced by root exudate characteristics s and seagrass biomass, which were strongly dependent on seagrass growth stages. Certain bacterial groups, such as Ruegeria, Sulfurovum, Photobacterium, and Ralstonia were closely associated with root exudation and may contribute to sulfur cycling, nitrogen fixation, and carbon remineralization, which were important for plant early development. Similarly, specific fungal taxa, including Astraeus, Alternaria, Rocella, and Tomentella, were enriched in spring and summer and showed growth-promoting abilities. Overall, our study suggests that seagrass secretes different compounds in its exudates at various developmental stages, shaping the rhizosphere microbial assemblages.


Subject(s)
Microbiota , Carbon , Rhizosphere , Biomass , Growth and Development , Plant Roots/microbiology , Soil Microbiology
11.
Chimia (Aarau) ; 77(11): 726-732, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38047839

ABSTRACT

Carbon sequestration to soils counteracts increasing CO2 levels in the atmosphere, and increases soil fertility. Efforts to increase soil carbon storage produced mixed results, due to the multifactorial nature of this process, and the lack of knowledge on molecular details on the interplay of plants, microbes, and soil physiochemical properties. This review outlines the carbon flow from the atmosphere into soils, and factors resulting in elevated or decreased carbon sequestration are outlined. Carbon partitioning within plants defines how much fixed carbon is allocated belowground, and plant and microbial respiration accounts for the significant amount of carbon lost. Carbon enters the soil in form of soluble and polymeric rhizodeposits, and as shoot and root litter. These different forms of carbon are immobilized in soils with varying efficiency as mineral-bound or particulate organic matter. Plant-derived carbon is further turned over by microbes in different soil layers. Microbial activity and substrate use is influenced by the type of carbon produced by plants (molecular weight, chemical class). Further, soil carbon formation is altered by root depth, growth strategy (perennial versus annual), and C/N ratio of rhizodeposits influence soil carbon formation. Current gaps of knowledge and future directions are highlighted.


Subject(s)
Carbon Sequestration , Carbon , Polymers , Soil
12.
Plants (Basel) ; 12(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895981

ABSTRACT

Magnesium (Mg) plays a crucial role in crop growth, but how Mg supply level affects root growth and nutrient absorption in vegetable crops with different genotypes has not been sufficiently investigated. In this study, the responses of tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) crops to different levels of Mg supply were explored. Four levels of Mg treatment (i.e., 0.2, 1.0, 2.0, 3.0 mmol/L) were applied under hydroponic conditions, denoted as Mg0.2, Mg1, Mg2, and Mg3, respectively. The results showed that with increasing Mg levels, the plant biomass, root growth, and nutrient accumulation in both vegetable crops all increased until reaching their maximum values under the Mg2 treatment and then decreased. The total biomass per tomato plant of Mg2 treatment was 30.9%, 14.0%, and 14.0% higher than that of Mg0.2, Mg1, and Mg3 treatments, respectively, and greater increases were observed in cucumber plant biomass (by 54.3%, 17.4%, and 19.9%, respectively). Compared with the Mg0.2 treatment, the potassium (K) and calcium (Ca) contents in various plant parts of both crops remarkably decreased under the Mg3 treatment. This change was accompanied by prominently increased Mg contents in various plant parts and para-hydroxybenzoic acid and oxalic acid contents in root exudates. Irrespective of Mg level, plant biomass, root growth, nutrient accumulation, and root exudation of organic acids were all higher in tomato plants than in cucumber plants. Our findings indicate that excessive Mg supply promotes the roots to exude phenolic acids and hinders the plants from absorbing K and Ca in different genotypes of vegetable crops despite no effect on Mg absorption. A nutritional deficiency of Mg stimulates root exudation of organic acids and increases the types of exuded organic acids, which could facilitate plant adaption to Mg stress. In terms of root growth and nutrient absorption, tomato plants outperform cucumber plants under low and medium Mg levels, but the latter crop is more tolerant to Mg excess.

13.
Plant Sci ; 335: 111793, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454818

ABSTRACT

Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum). Plants were grown in hydroponics and root exudation was measured over the growing period. At harvest, root morphology and root and shoot ionome was assessed. Shoot-to-root-ratio decreased in both species and in all nutrient deficiencies, besides in -Fe tomato. Barley root growth was enhanced in plants subjected to double deficiency behaving similarly to -P, while tomato reduced root morphology parameters in all treatments. To cope with the nutrient deficiency barley exuded mostly chelants, while tomato relied on organic acids. Moreover, tomato exhibited a slight exudation increase over time not detected in barley. Overall, in none of the species the double deficiency caused a substantial increase in root exudation. Multivariate statistics emphasized that all the treatments were significantly different from each other in tomato, while in barley only -Fe was statistically different from the other treatments. Our findings highlight that the response of the studied plants in double deficiencies is not additive but plant specific.


Subject(s)
Hordeum , Solanum lycopersicum , Plant Roots , Iron , Biological Transport , Nutrients , Hordeum/genetics
14.
Chemosphere ; 337: 139422, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422212

ABSTRACT

Swine wastewater contains high concentration of nitrogen (N), causing pollution of surrounding water bodies. Constructed wetlands (CWs) are considered as an effective ecological treatment measure to remove nitrogen. Some emergent aquatic plants could tolerate high ammonia, and play a crucial part in CWs to treat high concentration N wastewater. However, the mechanism of root exudates and rhizosphere microorganisms of emergent plants on nitrogen removal is still unclear. Effects of organic and amino acids on rhizosphere N cycle microorganisms and environmental factors across three emergent plants were investigated in this study. The highest TN removal efficiency were 81.20% in surface flow constructed wetlands (SFCWs) plant with Pontederia cordata. The root exudation rates results showed that organic and amino acids were higher in 56 d than that in 0 d in SFCWs plants with Iris pseudacorus and P. cordata. The highest ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) gene copy numbers were found in I. pseudacorus rhizosphere soil, while the highest nirS, nirK, hzsB and 16S rRNA gene copy numbers were detected in P. cordata rhizosphere soil. Regression analysis results demonstrated that organic and amino acids exudation rates were positive related to rhizosphere microorganisms. These results indicated that organic and amino acids secretion could stimulate growth of emergent plants rhizosphere microorganisms in SFCWs for swine wastewater treatment. In addition, the EC, TN, NH4+-N and NO3--N were negatively correlated with organic and amino acids exudation rates, and abundances of rhizosphere microorganisms via Pearson correlation analysis. These results imply that organic and amino acids, and rhizosphere microorganisms synergically affected on the nitrogen removal in SFCWs.


Subject(s)
Wastewater , Wetlands , Animals , Swine , Denitrification , Rhizosphere , Ammonia/metabolism , Nitrogen/analysis , RNA, Ribosomal, 16S , Plants/metabolism , Amino Acids , Soil
15.
Plants (Basel) ; 12(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375958

ABSTRACT

It is well known that plant-growth-promoting rhizobacteria (PGPRs) increase the tolerance of plants to abiotic stresses; however, the counteraction of Al toxicity has received little attention. The effects of specially selected Al-tolerant and Al-immobilizing microorganisms were investigated using pea cultivar Sparkle and its Al-sensitive mutant E107 (brz). The strain Cupriavidus sp. D39 was the most-efficient in the growth promotion of hydroponically grown peas treated with 80 µM AlCl3, increasing the plant biomass of Sparkle by 20% and of E107 (brz) by two-times. This strain immobilized Al in the nutrient solution and decreased its concentration in E107 (brz) roots. The mutant showed upregulated exudation of organic acids, amino acids, and sugars in the absence or presence of Al as compared with Sparkle, and in most cases, the Al treatment stimulated exudation. Bacteria utilized root exudates and more actively colonized the root surface of E107 (brz). The exudation of tryptophan and the production of IAA by Cupriavidus sp. D39 in the root zone of the Al-treated mutant were observed. Aluminum disturbed the concentrations of nutrients in plants, but inoculation with Cupriavidus sp. D39 partially restored such negative effects. Thus, the E107 (brz) mutant is a useful tool for studying the mechanisms of plant-microbe interactions, and PGPR plays an important role in protecting plants against Al toxicity.

16.
Ecol Appl ; 33(5): e2861, 2023 07.
Article in English | MEDLINE | ID: mdl-37092906

ABSTRACT

Mowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short-term mowing enhanced P cycling mainly through increased root exudation-evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long-term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing-stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource-efficient grassland management.


Subject(s)
Gardens , Phosphorus , Soil , Biomass , Carbon , Ecosystem , Grassland , Nitrogen/metabolism , Plants , Poaceae
17.
Microbiome ; 11(1): 70, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37004105

ABSTRACT

BACKGROUND: The rhizosphere microbiome, which is shaped by host genotypes, root exudates, and plant domestication, is crucial for sustaining agricultural plant growth. Despite its importance, how plant domestication builds up specific rhizosphere microbiomes and metabolic functions, as well as the importance of these affected rhizobiomes and relevant root exudates in maintaining plant growth, is not well understood. Here, we firstly investigated the rhizosphere bacterial and fungal communities of domestication and wild accessions of tetraploid wheat using amplicon sequencing (16S and ITS) after 9 years of domestication process at the main production sites in China. We then explored the ecological roles of root exudation in shaping rhizosphere microbiome functions by integrating metagenomics and metabolic genomics approaches. Furthermore, we established evident linkages between root morphology traits and keystone taxa based on microbial culture and plant inoculation experiments. RESULTS: Our results suggested that plant rhizosphere microbiomes were co-shaped by both host genotypes and domestication status. The wheat genomes contributed more variation in the microbial diversity and composition of rhizosphere bacterial communities than fungal communities, whereas plant domestication status exerted much stronger influences on the fungal communities. In terms of microbial interkingdom association networks, domestication destabilized microbial network and depleted the abundance of keystone fungal taxa. Moreover, we found that domestication shifted the rhizosphere microbiome from slow growing and fungi dominated to fast growing and bacteria dominated, thereby resulting in a shift from fungi-dominated membership with enrichment of carbon fixation genes to bacteria-dominated membership with enrichment of carbon degradation genes. Metagenomics analyses further indicated that wild cultivars of wheat possess higher microbial function diversity than domesticated cultivars. Notably, we found that wild cultivar is able to harness rhizosphere microorganism carrying N transformation (i.e., nitrification, denitrification) and P mineralization pathway, whereas rhizobiomes carrying inorganic N fixation, organic N ammonification, and inorganic P solubilization genes are recruited by the releasing of root exudates from domesticated wheat. More importantly, our metabolite-wide association study indicated that the contrasting functional roles of root exudates and the harnessed keystone microbial taxa with different nutrient acquisition strategies jointly determined the aboveground plant phenotypes. Furthermore, we observed that although domesticated and wild wheats recruited distinct microbial taxa and relevant functions, domestication-induced recruitment of keystone taxa led to a consistent growth regulation of root regardless of wheat domestication status. CONCLUSIONS: Our results indicate that plant domestication profoundly influences rhizosphere microbiome assembly and metabolic functions and provide evidence that host plants are able to harness a differentiated ecological role of root-associated keystone microbiomes through the release of root exudates to sustain belowground multi-nutrient cycles and plant growth. These findings provide valuable insights into the mechanisms underlying plant-microbiome interactions and how to harness the rhizosphere microbiome for crop improvement in sustainable agriculture. Video Abstract.


Subject(s)
Microbiota , Mycobiome , Domestication , Rhizosphere , Plant Roots/microbiology , Microbiota/genetics , Plants , Bacteria/genetics , Soil Microbiology
18.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Article in English | MEDLINE | ID: mdl-36931867

ABSTRACT

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Subject(s)
Ecosystem , Mycorrhizae , Plant Roots/metabolism , Droughts , Forests , Mycorrhizae/metabolism , Trees , Exudates and Transudates/metabolism , Organic Chemicals/analysis , Amino Acids/analysis , Amino Acids/metabolism , Soil/chemistry , Sugars/analysis , Sugars/metabolism , Plant Exudates/analysis , Plant Exudates/metabolism
19.
J Hazard Mater ; 448: 130960, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860046

ABSTRACT

The dissipation of chlorpyrifos (CP) and its hydrolytic metabolite 3,5,6-trichloro-2-pyridinol (TCP) in the soil is crucial for safe agriculture. However, there is still lacking relevant information about its dissipation under different vegetation for remediation purposes. In the present study, evaluation of dissipation of CP and TCP in non-planted and planted soil with different cultivars of three types of aromatic grass viz Cymbopogon martinii (Roxb. Wats), Cymbopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash was examined in light of soil enzyme kinetics, microbial communities, and root exudation. Results revealed that the dissipation of CP was well-fitted into a single first-order exponential model (SFO). A significant reduction in the half-life (DT50) of CP was observed in planted soil (30-63 days) than in non-planted soil (95 days). The presence of TCP in all soil samples was observed. The three types of the inhibitory effect of CP i.e. linear mixed inhibition (increase in enzyme-substrate affinity (Km) and decrease in enzyme pool (Vmax), un-competitive inhibition (decrease in Km and Vmax), and simple competitive inhibition were observed on soil enzymes involved in mineralization of carbon, nitrogen, phosphorus, and sulfur. The improvement in the enzyme pool (Vmax) was observed in planted soil. Streptomyces, Clostridium, Kaistobacter, Planctomyces, and Bacillus were the dominant genera in CP stress soil. CP contamination in soil demonstrated a reduction of richness in microbial diversity and enhancement of functional gene family related to cellular process, metabolism, genetic, and environmental information processing. Among all the cultivars, C. flexuosus cultivars demonstrated a higher dissipation rate of CP along with more root exudation.


Subject(s)
Chlorpyrifos , Cymbopogon , Microbiota , Poaceae , Soil , Kinetics
20.
Anal Bioanal Chem ; 415(5): 823-840, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36547703

ABSTRACT

Root exudation is a major pathway of organic carbon input into soils. It affects soil physical properties, element solubility as well as speciation, and impacts the microbial community in the rhizosphere. Root exudates contain a large number of primary and secondary plant metabolites, and the amount and composition are highly variable depending on plant species and developmental stage. Detailed information about exudate composition will allow for a better understanding of exudate-driven rhizosphere processes and their feedback loops. Although non-targeted metabolomics by high-resolution mass spectrometry is an established tool to characterize root exudate composition, the extent and depth of the information obtained depends strongly on the analytical approach applied. Here, two genotypes of Zea mays L., differing in root hair development, were used to compare six mass spectrometric approaches for the analysis of root exudates. Reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography combined with time-of-flight mass spectrometry (LC-TOF-MS), as well as direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS), were applied with positive and negative ionization mode. By using the same statistical workflow, the six approaches resulted in different numbers of detected molecular features, ranging from 176 to 889, with a fraction of 48 to 69% of significant features (fold change between the two genotypes of > 2 and p-value < 0.05). All approaches revealed the same trend between genotypes, namely up-regulation of most metabolites in the root hair defective mutant (rth3). These results were in agreement with the higher total carbon and nitrogen exudation rate of the rth3-mutant as compared to the corresponding wild-type maize (WT). However, only a small fraction of features were commonly found across the different analytical approaches (20-79 features, 13-31% of the rth3-mutant up-regulated molecular formulas), highlighting the need for different mass spectrometric approaches to obtain a more comprehensive view into the composition of root exudates. In summary, 111 rth3-mutant up-regulated compounds (92 different molecular formulas) were detected with at least two different analytical approaches, while no WT up-regulated compound was found by both, LC-TOF-MS and DI-FT-ICR-MS. Zea mays L. exudate features obtained with multiple analytical approaches in our study were matched against the metabolome database of Zea mays L. (KEGG) and revealed 49 putative metabolites based on their molecular formula.


Subject(s)
Metabolome , Metabolomics , Metabolomics/methods , Mass Spectrometry/methods , Exudates and Transudates , Carbon/analysis , Plant Roots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL