Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.455
Filter
1.
J Biochem Mol Toxicol ; 38(8): e23784, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095945

ABSTRACT

Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.


Subject(s)
Acrylamide , DNA Damage , Inflammation , Oxidative Stress , Rutin , Animals , Rutin/pharmacology , Female , Oxidative Stress/drug effects , Acrylamide/toxicity , DNA Damage/drug effects , Rats , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/drug therapy , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Rats, Wistar , Computer Simulation , Antioxidants/pharmacology , Antioxidants/metabolism
2.
J Ethnopharmacol ; : 118637, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097212

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera (Moringaceae family), commonly known as horseradish or tree of life, is traditionally used for various diseases, such as diabetes, hypercholesterolemia, neurological disorders, among others. AIM OF THE STUDY: To evaluate the toxicological profile of the oral use of an aqueous extract of Moringa oleifera leaves for 13 weeks in mice. MATERIALS AND METHODS: Initially, a factorial design (23) was carried out to optimize aqueous extraction using as variables; the extraction method and proportion of drug. The 13-week repeated-dose toxicity trial used female and male mice, with oral administration of aqueous extract of Moringa oleifera leaves at doses of 250, 500, and 1000 mg/kg. The animals were evaluated for body weight, water and feed intake, biochemical and hematological parameters, urinalysis, ophthalmology and histopathology of the liver, spleen and kidneys. RESULTS: The extraction efficiency was evidenced by the extraction by maceration at 5%, obtaining the optimized extract of Moringa oleifera (OEMo). The oral administration of OEMo did not promote significant difference (p>0.05) in the weight gain, food and water consumption of the control animals and those treated with 250 and 500 mg/kg. However, treatment with 1,000 mg/kg promoted a reduction (p<0.05) in food intake and body weight from the 7th week onwards in male and female mice. No alterations were detected in the hematological and histological parameters in the concentrations tested for both sexes. The highest concentration treatment (1000 mg/kg) promoted an increase in transaminases in males and females. All concentrations promoted a significant decrease (p<0.05) in the serum lipid profile of mice. CONCLUSION: This study developed an optimized extract of Moringa oleifera leaves, which should be used with caution in preparations above 500 mg/kg for the long term because it leads to significant changes in liver enzymes. On the other hand, the extract proved to be a promising plant preparation for hyperlipidemia in mice.

3.
Food Chem Toxicol ; 191: 114887, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053873

ABSTRACT

Zearalenone (ZEN) poses a potential threat on human and animal health partly through the nuclear factor (NF)-κB signaling pathway. In silico study suggested that rutin effective against TLR4 and NF-κB. A wetting test was designed to evaluate the effect and underlying mechanism of rutin in alleviating ZEN-induced inflammation in animals. Twenty-four female mice were randomly divided into 4 groups: control (basal diet), ZEN group (basal diet + ZEN), rutin group (basic diet + rutin), Z + R group (basal diet + rutin + ZEN). Results showed that rutin effectively alleviated ZEN-induced inflammation and damage of liver and jejunum in mice. Rutin addition reduced the content of lipopolysaccharide (LPS) in serum and liver mainly by improving the intestinal barrier function resulted from the production increase of short-chain fatty acids (SCFA). In sum, this study showed that rutin alleviated ZEN-induced liver inflammation and injury by modulating the gut microbiota, increasing the production of SCFA and improving intestinal barrier function, leading to the decrease of LPS in liver and the inhibition of MyD88 independent NF-κB signaling pathway in mice. Specifically, these findings may provide useful insights into the screening of functional natural compounds and its action mechanism to alleviate ZEN induced liver inflammation.

4.
Aging Cell ; : e14275, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016438

ABSTRACT

Renal aging, marked by the accumulation of senescent cells and chronic low-grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single-cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low-grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage-mediated tubular partial epithelial-mesenchymal transition in vitro, thereby mitigating the expression of fibrosis-related genes. Using SCENIC analysis, we infer Stat1 as a key age-related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti-aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging-related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age-related renal chronic low-grade inflammation and fibrosis.

5.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999004

ABSTRACT

Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Animals , Acetylcholinesterase/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Antidepressive Agents/therapeutic use , Mice , Mexico
6.
J Fluoresc ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995477

ABSTRACT

This research explores the fluorescence properties and photostability of boron nitrogen co-doped graphene quantum dots (BN-GQDs), evaluating their effectiveness as sensors for rutin (RU). BN-GQDs are biocompatible and exhibit notable absorbance and fluorescence characteristics, making them suitable for sensing applications. The study utilized various analytical techniques to investigate the chemical composition, structure, morphology, optical attributes, elemental composition, and particle size of BN-GQDs. Techniques included X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The average particle size of the BN-GQDs was determined to be approximately 3.5 ± 0.3 nm. A clear correlation between the emission intensity ratio and RU concentration was identified across the range of 0.42 to 4.1 µM, featuring an impressively low detection limit (LOD) of 1.23 nM. The application of BN-GQDs as fluorescent probes has facilitated the development of a highly sensitive and selective RU detection method based on Förster resonance energy transfer (FRET) principles. This technique leverages emission at 465 nm. Density Functional Theory (DFT) analyses confirm that FRET is the primary mechanism behind fluorescence quenching, as indicated by the energy levels of the lowest unoccupied molecular orbitals (LUMOs) of BN-GQDs and RU. The method's effectiveness has been validated by measuring RU concentrations in human serum samples, showing a recovery range between 97.8% and 103.31%. Additionally, a smartphone-based detection method utilizing BN-GQDs has been successfully implemented, achieving a detection limit (LOD) of 49 nM.

7.
Sci Rep ; 14(1): 15314, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961104

ABSTRACT

This work examines the capacity of Naringin and Rutin to influence the DNA damage response (DDR) pathway by investigating their interactions with key DDR proteins, including PARP-1, ATM, ATR, CHK1, and WEE1. Through a combination of in silico molecular docking and in vitro evaluations, we investigated the cytotoxic and genotoxic effects of these compounds on MDA-MB-231 cells, comparing them to normal human fibroblast cells (2DD) and quiescent fibroblast cells (QFC). The research found that Naringin and Rutin had strong affinities for DDR pathway proteins, indicating their capacity to specifically regulate DDR pathways in cancer cells. Both compounds exhibited preferential cytotoxicity towards cancer cells while preserving the vitality of normal 2DD fibroblast cells, as demonstrated by cytotoxicity experiments conducted at a dose of 10 µM. The comet experiments performed particularly on QFC cells provide valuable information on the genotoxic impact of Naringin and Rutin, highlighting the targeted initiation of DNA damage in cancer cells. The need to use precise cell models to appropriately evaluate toxicity and genotoxicity is emphasized by this discrepancy. In addition, ADMET and drug-likeness investigations have emphasized the pharmacological potential of these compounds; however, they have also pointed out the necessity for optimization to improve their therapeutic profiles. The antioxidant capabilities of Naringin and Rutin were assessed using DPPH and free radical scavenging assays at a concentration of 10 µM. The results confirmed that both compounds have a role in reducing oxidative stress, hence enhancing their anticancer effects. Overall, Naringin and Rutin show potential as medicines for modulating the DDR in cancer treatment. They exhibit selective toxicity towards cancer cells while sparing normal cells and possess strong antioxidant properties. This analysis enhances our understanding of the therapeutic uses of natural chemicals in cancer treatment, supporting the need for more research on their mechanisms of action and clinical effectiveness.


Subject(s)
Antioxidants , Breast Neoplasms , DNA Damage , Flavanones , Molecular Docking Simulation , Oxidative Stress , Rutin , Humans , Flavanones/pharmacology , Rutin/pharmacology , DNA Damage/drug effects , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Oxidative Stress/drug effects , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Survival/drug effects
8.
Neurotoxicology ; 104: 1-10, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032614

ABSTRACT

Lead (Pb) is harmful to almost all organs, particularly the developmental neural system, and previous studies revealed oxidative stress played an important role in Pb neurotoxicity. Rutin, a type of flavonoid glycoside found in various plants and fruits, is widely used as a dietary supplement due to its antioxidant and anti-inflammatory properties, but whether rutin could protect against Pb neurotoxicity is unclear. In this study, we found rutin treatment significantly alleviated Pb-induced cell death, oxidative stress, and inflammation, resulting in cell survival. Moreover, rutin treatment promoted nuclear factor erythroid 2-related factor 2 (Nrf2) translocation from cytoplasm to nucleus and subsequently activated antioxidant and detoxifying enzymes expression including HO-1. Knocking down Nrf2 by siRNA transfection abolished this protection of rutin against Pb. Overall, rutin could alleviate Pb-induced oxidative stress, inflammation, and cell death by activating the Nrf2/antioxidant response elements (ARE) system.

9.
BioTech (Basel) ; 13(3)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39051339

ABSTRACT

Rutin, a flavonoid phytochemical compound, plays a vital role in human health. It is used in treating capillary fragility and has anti-Alzheimer, anti-inflammatory, and antioxidant effects. In this study, Ti-Mo-Ni-O nanotubes (NTs) were used, for the first time, in an unprecedented plant biotechnology application, wherein in vitro Philodendron shoots (Philodendron erubescens) known as "Imperial Red" were targeted for rutin accumulation. The antioxidant responses and the accumulation of rutin were evaluated in treated Philodendron erubescens (P. erubescens) shoots using 5.0 mg/L of Ti-Mo-Ni-O NTs. The total phenolic content and total flavonoid content were estimated, and an ABTS+ assay, FRAP assay, and iron metal chelation assay were performed. The application of Ti-Mo-Ni-O NTs enhanced the rutin content considerably from 0.02 mg/g to 2.96 mg/g for dry-weight shootlet extracts. Therefore, the use of Ti-Mo-Ni-O NTs is proposed to be a superior alternative to elevate the rutin content. The aim of the current study is to target P. erubescens shoots grown in vitro for the accumulation of rutin compounds using Ti-Mo-Ni-O NT powder, to determine the quantitative and qualitative accumulation of rutin via HPLC-DAD analysis, and to estimate the antioxidant activity of P. erubescens shoot extract. This study presents a novel methodology for utilizing nano-biotechnology in the synthesis of plant secondary metabolites.

10.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947101

ABSTRACT

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Subject(s)
Alzheimer Disease , Carbon , Glucose , Nitrogen , Rutin , Rutin/pharmacology , Rutin/chemistry , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Carbon/chemistry , Carbon/pharmacology , Nitrogen/chemistry , Rats , Glucose/metabolism , Male , Quantum Dots/chemistry , Disease Models, Animal , Oxidative Stress/drug effects , Humans
11.
Drug Chem Toxicol ; : 1-14, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38948945

ABSTRACT

Gallic acid (GAL), rutin (RUT), and quercetin (QUE) are common antioxidant agents in fruits and vegetables with intriguing pharmacological effects. In the present study, we compared the therapeutic outcomes of GAL + QUE in comparison with GAL + RUT co-treatment in a busulfan (BUS) model of testicular injury in Wistar rats. BUS (4 mg kg-1 body weight (b.w) was injected intraperitoneally daily for 4 days. GAL + RUT or GAL + QUE (20 mg kg-1 b. w) was delivered by oral gavage for 52 days. Examination of the testes of BUS-treated rats both biochemically and under light microscopy revealed an increased level of lipid peroxidation, DNA fragmentation, glutathione-S-transferase, lactate dehydrogenase, gamma-glutamyl transpeptidase, alkaline phosphatase and acid phosphatase with a concomitant decrease in the level of antioxidants: glutathione, ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, suggesting testicular injury. Tissue sections confirmed the testicular injury-induced by BUS, including diminished spermatogenesis score index, tubular diameter, gonado-somatic index, testis weight, epithelia thickness and higher percentage of aberrant tubules. GAL + QUE co-administration had better recovery effects than GAL + RUT on the biochemical markers and protected against BUS-induced testicular damage. GAL + QUE treatment regimen has better capacity to maintain the antioxidant capacity of the testes and is more potent at reducing BUS-induced oxidative damage compared to GAL + RUT.

12.
Bioanalysis ; 16(11): 557-567, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-39011589

ABSTRACT

Aim: A HPLC method was developed and validated for the novel combination of rutin (RN) and donepezil (DNP). Materials & methods: RN and DNP were simultaneously eluted through a C18 column (Ø 150 × 4.6 mm) with a 60:40 v/v ratio of 0.1% formic acid aqueous solution to methanol at 0.5 ml/min. Results: The purposed method was found linear, selective, reproducible, accurate and precise with percent RSD less than 2. The limit of quantification for RN and DNP was found 3.66 and 3.25 µg/ml, respectively. Conclusion: Validated as per the ICH guidelines, the developed method efficiently quantified RN and DNP co-loaded in DQAsomes (121 nm) estimating matrix effect, release profile, entrapment efficiency, loading efficiency and in vivo plasma kinetics.


[Box: see text].


Subject(s)
Donepezil , Rutin , Donepezil/blood , Donepezil/analysis , Chromatography, High Pressure Liquid/methods , Rutin/analysis , Rutin/blood , Humans , Chromatography, Reverse-Phase/methods , Reproducibility of Results
13.
Food Chem ; 460(Pt 2): 140630, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39079356

ABSTRACT

Rutin, a naturally occurring flavonoid compound, possesses notable antioxidant properties along with anti-inflammatory and antiviral effects. This research aimed to improve the selectivity and high fluorescence behavior of novel nanomaterial BPGQDs@NaV, which was synthesized by hydrothermal methods. Through comprehensive characterization utilizing TEM, SEM, XRD, EDS, FT-IR, UV-Vis, TCS-PC, and XPS techniques, the prepared BPGQDs, NaV, and BPGQDs@NaV were thoroughly examined. The resulting BPGQDs@NaV nanomaterials demonstrated stable, reproducible fluorescence responses and exhibited selective recognition capabilities towards rutin. The sensor developed in this study displayed remarkable performance in rutin detection, offering a broad linear range from 5 to 110 nM and an outstanding detection limit of 15.16 nM. A computational study was used to examine energy, stability, band gap, and how rutin interacted with the BPGQDs@NaV, and it also favored the detection mechanism. A portable smartphone-based sensor was also developed for the detection of rutin.

14.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892197

ABSTRACT

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Subject(s)
Antiviral Agents , Disinfectants , Rutin , Disinfectants/pharmacology , Disinfectants/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Rutin/chemistry , Rutin/pharmacology , Humans , Computer Simulation , Viruses/drug effects , Viral Proteins/chemistry , Viral Proteins/metabolism , Molecular Docking Simulation , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Protein Binding
15.
Bioorg Chem ; 149: 107503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823312

ABSTRACT

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Subject(s)
L-Lactate Dehydrogenase , Rutin , Rutin/chemistry , Rutin/pharmacology , Rutin/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Docking Simulation , Computer Simulation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Mikrochim Acta ; 191(7): 393, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874794

ABSTRACT

Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.

17.
Biomed Pharmacother ; 177: 116961, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901206

ABSTRACT

Peptic ulcer is a sore on the stomach lining that results from the erosion of the gastrointestinal tract mucosa due to various influencing factors. Of these, Helicobacter pylori infection and non-steroidal anti-inflammatory drugs (NSAIDs) stand out as the most prominent causes. This condition poses a significant global health concern due to its widespread impact on individuals worldwide. While various treatment strategies have been employed, including proton pump inhibitors and histamine-2 receptor antagonists, these have notable side effects and limitations. Thus, there is a pressing need for new treatments to address this global health issue. Rutin, a natural flavonoid, exhibits a range of biological activities, including anti-inflammatory, anticancer, and antioxidant properties. This review explores the potential anti-ulcer effect of rutin in experimental models and how rutin can be a better alternative for treating peptic ulcers. We used published literature from different online databases such as PubMed, Google Scholar, and Scopus. This work highlights the abundance of rutin in various natural sources and its potential as a promising option for peptic ulcer treatment. Notably, the anti-inflammatory properties of rutin, which involve inhibiting inflammatory mediators and the COX-2 enzyme, are emphasized. While acknowledging the potential of rutin, it is important to underscore the necessity for further research to fully delineate its therapeutic potential and clinical applicability in managing peptic ulcers and ultimately improving patient outcomes. This review on the anti-ulcer potential of rutin opened a new door for further study in the field of alternative medicine in peptic ulcer management.


Subject(s)
Anti-Inflammatory Agents , Anti-Ulcer Agents , Peptic Ulcer , Rutin , Rutin/pharmacology , Rutin/therapeutic use , Humans , Peptic Ulcer/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use
18.
Front Vet Sci ; 11: 1426377, 2024.
Article in English | MEDLINE | ID: mdl-38872794

ABSTRACT

Excessive fat deposition due to impaired fat metabolism in chickens is a major problem in the poultry industry. Nutritional interventions are effective solutions, but current options are limited. A safe phytochemical, rutin, has shown positive effects in animals, but its effect on lipid metabolism in poultry remains unknown. Hence, this study is to investigate the effects of rutin on egg quality, serum biochemistry, fat deposition, lipid peroxidation and hepatic lipid metabolism in post-peak laying hens. A total of 360 Taihang laying hens (49-week-old) were randomly divided into five groups and fed a basal diet (control group, 0%) and a basal diet supplemented with 300 (0.03%), 600 (0.06%), 900 (0.09%), and 1,200 (0.12%) mg rutin/kg feed, respectively. The results showed that eggshell strength was significantly (p < 0.05) higher in the dietary rutin groups, whereas yolk percentage (p < 0.05), total cholesterol (TC) (p < 0.01) and yolk fat ratio (p < 0.01) decreased linearly (p < 0.05) in the dietary rutin groups. Importantly, dietary rutin reduced serum triglyceride (TG) and TC levels, decreased abdominal lipid deposition and liver index (p < 0.05), and which concomitantly decreased hepatic lipid (TG, TC, and free fatty acid) accumulation (p < 0.05). An increase (p < 0.05) in total antioxidant capacity and superoxide dismutase activity and a decrease (p < 0.05) in malondialdehyde levels were also found. At the same time, the activities of hepatic lipase, acetyl-CoA carboxylase and malic enzyme in the liver were decreased (p < 0.05). Dietary rutin also increased (p < 0.05) the expression of fatty acid oxidation-related genes (carnitine palmitoyl transferase 1, peroxisome proliferator-activated receptor α, farnesoid X receptor). Additionally, it decreased fatty acid synthesis genes (sterol regulatory element binding protein-1c, acetyl-CoA carboxylase α, stearoyl-CoA desaturase 1) (p < 0.05). In conclusion, the addition of rutin (0.06-0.12%) to the diet improved the fat metabolism and increased liver antioxidant capacity in post-peak laying hens, and these positive changes improved egg quality to some extent.

19.
Food Chem ; 458: 140226, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943961

ABSTRACT

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.

20.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929191

ABSTRACT

Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.

SELECTION OF CITATIONS
SEARCH DETAIL