Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biochem Genet ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39058404

ABSTRACT

Familial episodic pain syndrome (FEPS) is an autosomal-dominant inherited disorder characterized by paroxysmal pain episodes. FEPS appears in early childhood, gradually disappearing with age, and pain episodes can be triggered by fatigue, bad weather, and cold temperatures. Several gain-of-function variants have been reported for SCN9A, SCN10A, or SCN11A, which encode the voltage-gated sodium channel α subunits Nav1.7, Nav1.8, and Nav1.9, respectively. In this study, we conducted genetic analysis in a four-generation Japanese pedigree. The proband was a 7-year-old girl, and her brother, sister, mother, and grandmother were also experiencing or had experienced pain episodes and were considered to be affected. The father was unaffected. Sequencing of SCN9A, SCN10A, and SCN11A in the proband revealed a novel heterozygous variant of SCN11A: g.38894937G>A (c.2431C>T, p.Leu811Phe). This variant was confirmed in other affected members but not in the unaffected father. The affected residue, Leu811, is located within the DII/S6 helix of Nav1.9 and is important for signal transduction from the voltage-sensing domain and pore opening. On the other hand, the c.2432T>C (p.Leu811Pro) variant is known to cause congenital insensitivity to pain (CIP). Molecular dynamics simulations showed that p.Leu811Phe increased the structural stability of Nav1.9 and prevented the necessary conformational changes, resulting in changes in the dynamics required for function. By contrast, CIP-related p.Leu811Pro destabilized Nav1.9. Thus, we speculate that p.Leu811Phe may lead to current leakage, while p.Leu811Pro can increase the current through Nav1.9.

2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999942

ABSTRACT

Familial episodic pain syndrome (FEPS) is an early childhood onset disorder of severe episodic limb pain caused mainly by pathogenic variants of SCN11A, SCN10A, and SCN9A, which encode three voltage-gated sodium channels (VGSCs) expressed as key determinants of nociceptor excitability in primary sensory neurons. There may still be many undiagnosed patients with FEPS. A better understanding of the associated pathogenesis, epidemiology, and clinical characteristics is needed to provide appropriate diagnosis and care. For this study, nationwide recruitment of Japanese patients was conducted using provisional clinical diagnostic criteria, followed by genetic testing for SCN11A, SCN10A, and SCN9A. In the cohort of 212 recruited patients, genetic testing revealed that 64 patients (30.2%) harbored pathogenic or likely pathogenic variants of these genes, consisting of 42 (19.8%), 14 (6.60%), and 8 (3.77%) patients with variants of SCN11A, SCN10A, and SCN9A, respectively. Meanwhile, the proportions of patients meeting the tentative clinical criteria were 89.1%, 52.0%, and 54.5% among patients with pathogenic or likely pathogenic variants of each of the three genes, suggesting the validity of these clinical criteria, especially for patients with SCN11A variants. These clinical diagnostic criteria of FEPS will accelerate the recruitment of patients with underlying pathogenic variants who are unexpectedly prevalent in Japan.


Subject(s)
Genetic Testing , NAV1.7 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Humans , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.9 Voltage-Gated Sodium Channel/genetics , Japan/epidemiology , NAV1.8 Voltage-Gated Sodium Channel/genetics , Male , Female , Genetic Testing/methods , Adult , Adolescent , Child , Genetic Predisposition to Disease , Young Adult , Child, Preschool , Mutation , Pain , Rectum/abnormalities
3.
J Endod ; 49(1): 18-25, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37185254

ABSTRACT

INTRODUCTION: The present study aimed to investigate the possible association between the single-nucleotide polymorphisms (SNPs) in the SCN9A, SCN10A, SCN11A, OPRM1, and COMT genes and the success rate of pulpal anesthesia after inferior alveolar nerve block (IANB). METHODS: A total of 70 patients (45 females and 25 males) presenting mandibular molar teeth with symptomatic irreversible pulpitis were included. Saliva samples were collected from the participants before the application of IANB. A standard IANB was performed with 1.8 mL 4% articaine with 1:100,000 epinephrine. Endodontic treatment was initiated 15 minutes after injection, and the patients were asked to report their pain level during the procedure on a 170-mm Heft-Parker visual analog scale. If the patient recorded a pain level of lower than 54 on the visual analog scale (no pain or mild pain), the anesthesia was considered successful. The DNA isolation and genotyping were performed, and the association between rs4286289, rs6746030, rs6795970, rs6801957, rs11709492, rs1799971, rs1799973, rs4680, rs6269, rs4633, and rs740603 SNPs and the success rate of anesthesia was investigated. RESULTS: The anesthesia success rate was significantly lower for the GG genotypes (45%) than the GA and AA genotypes (90%) for rs6795970 in the SCN10A gene. Additionally, the A allele for rs6795970 and the T allele for rs6801957 in the SCN10A gene were significantly associated with higher anesthesia success rates. CONCLUSIONS: SNPs in the SCN10A gene affect the success rate of pulpal anesthesia after IANB.


Subject(s)
Anesthesia, Dental , Nerve Block , Pulpitis , Male , Female , Humans , Anesthetics, Local , Polymorphism, Single Nucleotide , Nerve Block/methods , Mandibular Nerve , Double-Blind Method , Carticaine , Anesthesia, Dental/methods , Pulpitis/genetics , Pulpitis/surgery , Pain , Lidocaine , NAV1.7 Voltage-Gated Sodium Channel
4.
Channels (Austin) ; 17(1): 2212350, 2023 12.
Article in English | MEDLINE | ID: mdl-37186898

ABSTRACT

The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.


Subject(s)
Hyperalgesia , NAV1.9 Voltage-Gated Sodium Channel , Neurons , Humans , Ganglia, Spinal , Pain
5.
Front Neurol ; 13: 856459, 2022.
Article in English | MEDLINE | ID: mdl-35711274

ABSTRACT

Background: The SCN11A gene encodes the α-subunit of the Nav1. 9 channel, which is a regulator of primary sensory neuron excitability. Nav1.9 channels play a key role in somatalgia. Humans with the gain-of-function mutation R222S in SCN11A exhibit familial episodic pain. As already known, R222S knock-in mice carrying a mutation orthologous to the human R222S variant demonstrate somatic hyperalgesia. This study investigated whether Scn11a R222S/R222S mice developed visceral hyperalgesia and intestinal dysmotility. Methods: We generated Scn11a R222S/R222S mice using the CRISPR/Cas9 system. The somatic pain threshold in Scn11a R222S/R222S mice was assessed by Hargreaves' test and formalin test. The excitability of dorsal root ganglia (DRG) neurons was assessed by whole-cell patch-clamp recording. Visceralgia was tested using the abdominal withdrawal reflex (AWR), acetic acid-induced writhing, and formalin-induced visceral nociception tests. Intestinal motility was detected by a mechanical recording of the intestinal segment and a carbon powder propelling test. The excitability of the enteric nervous system (ENS) could influence gut neurotransmitters. Gut neurotransmitters participate in regulating intestinal motility and secretory function. Therefore, vasoactive intestinal peptide (VIP) and substance P (SP) were measured in intestinal tissues. Results: The R222S mutation induced hyperexcitability of dorsal root ganglion neurons in Scn11a R222S/R222S mice. Scn11a R222S/R222S mice exhibited somatic hyperalgesia. In addition, Scn11a R222S/R222S mice showed lower visceralgia thresholds and slowed intestinal movements when compared with wild-type controls. Moreover, Scn11a R222S/R222S mice had lower SP and VIP concentrations in intestinal tissues. Conclusions: These results indicated that Scn11a R222S/R222S mice showed visceral hyperalgesia and intestinal dysmotility.

6.
Neurol Sci ; 43(9): 5605-5614, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35524925

ABSTRACT

BACKGROUND: Familial episodic pain syndrome type 3 (FEPS3) is an inherited disorder characterized by the early-childhood onset of severe episodic pain that primarily affects the distal extremities. As skin biopsy has revealed a reduction in intraepidermal nerve fiber density and degeneration of the unmyelinated axons, it remains unclear whether FEPS3 patients have pathological changes in the peripheral nerve. METHODS: The clinical features of patients with FEPS3 were summarized in a large autosomal dominant family. Sural nerve biopsies were conducted in two patients. Whole exome sequencing (WES) was performed in the index patient. Sanger sequencing was used to analyze family co-segregation. RESULTS: Fourteen members exhibited typical and uniform clinical phenotypes characterized by length-dependent and age-dependent severe episodic pain affecting the distal extremities, which can be relieved with anti-inflammatory medicine. The WES revealed a heterozygous mutation c.665G > A (p.R222H) in the SCN11A gene, which was co-segregated with the clinical phenotype in this family. A sural biopsy in patient V:1, who was experiencing episodic pain at 16 years old, showed normal structure, while the sural nerve in patient IV:1, whose pain attack had completely diminished at 42 years old, displayed a decrease of the density of unmyelinated axons with the axonal degeneration. CONCLUSIONS: The clinical phenotype of FEPS3 showed distinctive characteristics that likely arise from dysfunctional nociceptive neurons that lack detectable pathological alterations in the nerve fibers. Nevertheless, long-term dysfunction of the Nav1.9 channel may cause degeneration of the unmyelinated fibers in FEPS3 patient with pain remission.


Subject(s)
Peripheral Nervous System Diseases , Sural Nerve , Axons , Humans , Pain/genetics , Pain/pathology , Peripheral Nerves , Peripheral Nervous System Diseases/pathology , Sural Nerve/pathology
7.
Ann Transl Med ; 10(4): 238, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35280382

ABSTRACT

The purpose of this case report and literature review is to show that familial episodic pain syndrome (FEPS) is a non-inflammatory genetically inherited pain syndrome. A 3-year-old boy presented at our hospital with pain in both his forearms and lower limbs below the knees for more than 3 years. There were no abnormalities in the blood tests, blood smears, liver and kidney function tests, trace elements tests, cellular immunity test, humoral immunity test, autoantibody tests, C-reactive protein (CRP) test, erythrocyte sedimentation rate (ESR) test, and tumor-related and bone marrow cytology examinations. Additionally, the imaging examination results showed no abnormalities. From the patient's medical history, we found that the mother of the child had a family history of a similar disease. To date, only 21 cases of FEPS3 caused by the sodium voltage-gated channel alpha subunit 11A (SCN11A) gene mutation have been reported. Although the age of onset is different, most of them are inherited in families. The results of the genetic examination revealed that the pain mainly came from the genetic inheritance of the maternal family line. The whole exon gene test revealed that the pain was caused by 2 heterozygous mutations of c.674G > T and c.671T > C in the SCN11A gene.

8.
Indian J Dermatol ; 65(4): 299-303, 2020.
Article in English | MEDLINE | ID: mdl-32831372

ABSTRACT

Lack of pain sensation in children involves a rare group of heritable disorders; hereditary sensory and autonomic neuropathy (HSAN). Till date, eight types of HSAN have been described depending on the clinical phenotype and the underlying gene mutation. We report a new variant of HSAN (Type IX) in two siblings (of Indian origin) with a novel mutation of SCN11A gene and a distinct clinical phenotype.

9.
Drug Dev Res ; 80(8): 1128-1135, 2019 12.
Article in English | MEDLINE | ID: mdl-31498915

ABSTRACT

Bipolar disorder (BD) is a complex neuropsychiatric disorder characterized by recurrent mania and depression episodes and requiring lifelong treatment with mood stabilizing drugs. Several lines of evidence, including with BD patient iPSC-derived neurons, suggest that neuronal hyperexcitability may underlie the key clinical symptoms of BD. Indeed, higher mRNA levels of SCN11A, coding for the voltage-gated sodium channel NaV 1.9 implicated in nociception, were detected in iPSC-derived neurons from BD patients, and were normalized by in vitro lithium. Here we studied SCN11A expression in peripheral blood mononuclear cells (PBMCs) from well-phenotyped female BD patients and controls and evaluated their association with several clinical sub-phenotypes. We observed higher mRNA levels of SCN11A in PBMCs from female BD patients with no records of alcohol dependence (p = .0050), no records of psychosis (p = .0097), or no records of suicide attempts (p = .0409). A trend was observed for higher SCN11A expression (FD = 1.91; p = .052) in BD PBMCs compared with controls. Datamining of published postmortem gene expression datasets indicated higher SCN11A expression in dorsolateral prefrontal cortex and orbitofrontal cortex tissues from BD patients compared with controls. Higher phenotype-associated expression levels in PBMC from BD patients were also observed for ID2 (alcohol dependence, suicide attempts) and HDGFRP3 (seasonal BD pattern). Our findings suggest that higher PBMC SCN11A expression levels may be associated with certain behavioral BD sub-phenotypes, including lack of alcohol dependence and psychosis, among BD patients. The NaV 1.9 voltage-gated sodium channel thus deserves consideration as a tentative phenotype modifier in BD.


Subject(s)
Bipolar Disorder/genetics , Genetic Markers , Leukocytes, Mononuclear/chemistry , Up-Regulation , Adult , Bipolar Disorder/blood , Case-Control Studies , Female , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Inhibitor of Differentiation Protein 2/genetics , Intracellular Signaling Peptides and Proteins/genetics , Middle Aged , NAV1.9 Voltage-Gated Sodium Channel/genetics , Phenotype , Retrospective Studies , Young Adult
10.
Front Neurosci ; 13: 918, 2019.
Article in English | MEDLINE | ID: mdl-31551682

ABSTRACT

Voltage-gated sodium channel Nav1.9 is a threshold channel that regulates action potential firing. Nav1.9 is preferentially expressed in myenteric neurons, and small-diameter dorsal root ganglion (DRG) and trigeminal ganglion neurons including nociceptors. Recent studies have demonstrated a monogenic Mendelian link of Nav1.9 to human pain disorders. Gain-of-function variants in Nav1.9, which cause smaller depolarizations of RMP, have been identified in patients with familial episodic pain type 3 (FEPS3) and the more common pain disorder small fiber neuropathy. To explore the phenotypic spectrum of Nav1.9 channelopathy, here we report a new Nav1.9 mutation, N816K, in a child with early-onset episodic pain in both legs, episodic abdominal pain, and chronic constipation. Sequencing of further selected pain genes was normal. N816K alters a residue at the N-terminus of loop 2, proximal to the cytoplasmic terminus of transmembrane segment 6 in domain II. Voltage-clamp recordings demonstrate that Nav1.9-N816K significantly increases current density and hyperpolarizes voltage-dependence of activation by 10 mV, enabling a larger window current. Current-clamp recordings in DRG neurons shows that N816K channels depolarize RMP of small DRG neurons by 7 mV, reduce current threshold of firing an action potential and render DRG neurons hyperexcitable. Taken together these data demonstrate gain-of-function attributes of the newly described N816K mutation at the channel and cellular levels, which are consistent with a pain phenotype in the carrier of this mutation.

11.
J Neurol Neurosurg Psychiatry ; 90(3): 342-352, 2019 03.
Article in English | MEDLINE | ID: mdl-30554136

ABSTRACT

BACKGROUND: Neuropathic pain is common in peripheral neuropathy. Recent genetic studies have linked pathogenic voltage-gated sodium channel (VGSC) variants to human pain disorders. Our aims are to determine the frequency of SCN9A, SCN10A and SCN11A variants in patients with pure small fibre neuropathy (SFN), analyse their clinical features and provide a rationale for genetic screening. METHODS: Between September 2009 and January 2017, 1139 patients diagnosed with pure SFN at our reference centre were screened for SCN9A, SCN10A and SCN11A variants. Pathogenicity of variants was classified according to established guidelines of the Association for Clinical Genetic Science and frequencies were determined. Patients with SFN were grouped according to the VGSC variants detected, and clinical features were compared. RESULTS: Among 1139 patients with SFN, 132 (11.6%) patients harboured 73 different (potentially) pathogenic VGSC variants, of which 50 were novel and 22 were found in ≥ 1 patient. The frequency of (potentially) pathogenic variants was 5.1% (n=58/1139) for SCN9A, 3.7% (n=42/1139) for SCN10A and 2.9% (n=33/1139) for SCN11A. Only erythromelalgia-like symptoms and warmth-induced pain were significantly more common in patients harbouring VGSC variants. CONCLUSION: (Potentially) pathogenic VGSC variants are present in 11.6% of patients with pure SFN. Therefore, genetic screening of SCN9A, SCN10A and SCN11A should be considered in patients with pure SFN, independently of clinical features or underlying conditions.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/genetics , Small Fiber Neuropathy/genetics , Aged , Female , Genetic Testing , Genetic Variation/genetics , Humans , Male , Middle Aged , NAV1.9 Voltage-Gated Sodium Channel/genetics , Predictive Value of Tests , Retrospective Studies , Small Fiber Neuropathy/complications , Small Fiber Neuropathy/diagnosis
12.
Dev Neurobiol ; 77(12): 1371-1384, 2017 12.
Article in English | MEDLINE | ID: mdl-28913981

ABSTRACT

Developmental changes that occur in the prefrontal cortex during adolescence alter behavior. These behavioral alterations likely stem from changes in prefrontal cortex neuronal activity, which may depend on the properties and expression of ion channels. Nav1.9 sodium channels conduct a Na+ current that is TTX resistant with a low threshold and noninactivating over time. The purpose of this study was to assess the presence of Nav1.9 channels in medial prefrontal cortex (mPFC) layer II and V pyramidal neurons in young (20-day old), late adolescent (60-day old), and adult (6- to 7-month old) rats. First, we demonstrated that layer II and V mPFC pyramidal neurons in slices obtained from young rats exhibited a TTX-resistant, low-threshold, noninactivating, and voltage-dependent Na+ current. The mRNA expression of the SCN11a gene (which encodes the Nav1.9 channel) in mPFC tissue was significantly higher in young rats than in late adolescent and adult rats. Nav1.9 protein was immunofluorescently labeled in mPFC cells in slices and analyzed via confocal microscopy. Nav1.9 immunolabeling was present in layer II and V mPFC pyramidal neurons and was more prominent in the neurons of young rats than in the neurons of late adolescent and adult rats. We conclude that Nav1.9 channels are expressed in layer II and V mPFC pyramidal neurons and that Nav1.9 protein expression in the mPFC pyramidal neurons of late adolescent and adult rats is lower than that in the neurons of young rats. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1371-1384, 2017.


Subject(s)
Action Potentials/physiology , Gene Expression Regulation, Developmental/genetics , NAV1.9 Voltage-Gated Sodium Channel/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/growth & development , Pyramidal Cells/metabolism , Action Potentials/drug effects , Age Factors , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Electric Stimulation , Gene Expression Regulation, Developmental/drug effects , In Vitro Techniques , Male , Microscopy, Confocal , NAV1.9 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques , Pyramidal Cells/drug effects , RNA, Messenger/metabolism , Rats , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
13.
Pflugers Arch ; 467(12): 2423-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25916202

ABSTRACT

SCN11A encodes the voltage-gated sodium channel NaV1.9, which deviates most strongly from the other eight NaV channels expressed in mammals. It is characterized by resistance to the prototypic NaV channel blocker tetrodotoxin and exhibits slow activation and inactivation gating. Its expression in dorsal root ganglia neurons suggests a role in motor or pain signaling functions as also recently demonstrated by the occurrence of various mutations in human SCN11A leading to altered pain sensation syndromes. The systematic investigation of human NaV1.9, however, is severely hampered because of very poor heterologous expression in host cells. Using patch-clamp and two-electrode voltage-clamp methods, we show that this limitation is caused by the C-terminal structure of NaV1.9. A chimera of NaV1.9 harboring the C terminus of NaV1.4 yields functional expression not only in neuronal cells but also in non-excitable cells, such as HEK 293T or Xenopus oocytes. The major functional difference of the chimeric channel with respect to NaV1.9 is an accelerated activation and inactivation. Since the entire transmembrane domain is preserved, it is suited for studying pharmacological properties of the channel and the functional impact of disease-causing mutations. Moreover, we demonstrate how mutation S360Y makes NaV1.9 channels sensitive to tetrodotoxin and saxitoxin and that the unusual slow open-state inactivation of NaV1.9 is also mediated by the IFM (isoleucine-phenylalanine-methionine) inactivation motif located in the linker connecting domains III and IV.


Subject(s)
Ion Channel Gating , NAV1.9 Voltage-Gated Sodium Channel/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , NAV1.9 Voltage-Gated Sodium Channel/chemistry , NAV1.9 Voltage-Gated Sodium Channel/genetics , Protein Structure, Tertiary , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Sodium Channel Blockers/pharmacology , Species Specificity , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL