Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Front Bioeng Biotechnol ; 12: 1450611, 2024.
Article in English | MEDLINE | ID: mdl-39359266

ABSTRACT

Introduction: Over 6.8 million fractures occur annually in the US, with 10% experiencing delayed- or non-union. Anabolic therapeutics like PTH analogs stimulate fracture repair, and small molecule salt inducible kinase (SIK) inhibitors mimic PTH action. This study tests whether the SIK inhibitor YKL-05-099 accelerates fracture callus osteogenesis. Methods: 126 female mice underwent femoral shaft pinning and midshaft fracture, receiving daily injections of PBS, YKL-05-099, or PTH. Callus tissues were analyzed via RT-qPCR, histology, single-cell RNA-seq, and µCT imaging. Biomechanical testing evaluated tissue rigidity. A hydrogel-based delivery system for PTH and siRNAs targeting SIK2/SIK3 was developed and tested. Results: YKL-05-099 and PTH-treated mice showed higher mineralized callus volume fraction and improved structural rigidity. RNA-seq indicated YKL-05-099 increased osteoblast subsets and reduced chondrocyte precursors. Hydrogel-released siRNAs maintained target knockdown, accelerating callus mineralization. Discussion: YKL-05-099 enhances fracture repair, supporting selective SIK inhibitors' development for clinical use. Hydrogel-based siRNA delivery offers targeted localized treatment at fracture sites.

2.
Adv Biol (Weinh) ; : e2400032, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267218

ABSTRACT

A wide range of cells respond to fibroblast growth factor 2 (FGF2) by proliferation via activation of the Ras/ERK1/2 pathway. In this study, the potential involvement of salt inducible kinase SIK2) in this cascade within retinal Müller glia is explored. It is found that SIK2 phosphorylation status and activity are modulated in an FGF2-dependent manner, possibly via ERK1/2. With SIK2 downregulation, enhanced ERK1/2 activation with delayed attenuation and increased cell proliferation is observed, while SIK2 overexpression hampers FGF2-dependent ERK1/2 activation. In vitro kinase and site-directed mutagenesis studies indicate that SIK2 targets the pathway element GRB2-associated-binding protein 1 (Gab1) on Ser266. This phosphorylation event weakens Gab1 interactions with its partners growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain containing phosphatase 2 (Shp2). Collectively, these results suggest that during FGF2-dependent proliferation process ERK1/2-mediated activation of SIK2 targets Gab1, resulting in downregulation of the Ras/ERK1/2 cascade in a feedback loop.

3.
Cells ; 13(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39329749

ABSTRACT

The neuronal etiology of obesity is centered around a diet-induced inflammatory state in the arcuate nucleus of the hypothalamus, which impairs the functionality of pro-opiomelanocortine neurons (POMCs) responsible for whole-body energy homeostasis and feeding behavior. Intriguingly, systemic salt inducible kinase 2 (SIK2) knockout mice demonstrated reduced food intake and energy expenditure along with modestly dysregulated metabolic parameters, suggesting a causal link between the absence of SIK2 activity in POMCs and the observed phenotype. To test this hypothesis, we conducted a comparative secretomics study from POMC neurons following pharmacologically induced endoplasmic reticulum (ER) stress induction, a hallmark of metabolic inflammation and POMC dysregulation in diet-induced obese (DIO) mice. Our data provide significant in vitro evidence for the POMC-specific SIK2 activity in controlling energy metabolism and feeding in DIO mice by regulating the nature of the related POMC secretome. Our data also suggest that under physiological stress conditions, SIK2 may act as a gatekeeper for the secreted inflammatory factors and signaling molecules critical for cellular survival and energy homeostasis. On the other hand, in the absence of SIK2, the gate opens, leading to a surge of inflammatory cytokines and apoptotic cues concomitant with the dysregulation of POMC neurons.


Subject(s)
Endoplasmic Reticulum Stress , Homeostasis , Pro-Opiomelanocortin , Protein Serine-Threonine Kinases , Animals , Pro-Opiomelanocortin/metabolism , Endoplasmic Reticulum Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Mice , Homeostasis/drug effects , Mice, Knockout , Neurons/metabolism , Neurons/drug effects , Energy Metabolism/drug effects , Mice, Inbred C57BL , Male , Obesity/metabolism , Obesity/pathology
4.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39158086

ABSTRACT

Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.


Subject(s)
Gonadotropins , Granulosa Cells , Mice, Knockout , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Mice , Gonadotropins/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Aromatase/genetics , Aromatase/metabolism , Fertility/genetics , Fertility/drug effects , Estradiol/pharmacology
5.
Drug Resist Updat ; 74: 101077, 2024 May.
Article in English | MEDLINE | ID: mdl-38518726

ABSTRACT

PURPOSE: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS: SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS: SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Protein Serine-Threonine Kinases , Synthetic Lethal Mutations , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Synthetic Lethal Mutations/drug effects , Xenograft Model Antitumor Assays
6.
Environ Toxicol ; 39(2): 768-782, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37772720

ABSTRACT

Breast cancer is the most common malignancy in the world and one of the leading causes of cancer death, which is a heterogeneous disease involving genetic and environmental factors. Breast cancer stem cells (BCSCs) are the main players in the aggressiveness of different tumors, at the same time, these cells are the main challenge for cancer treatment. There are multiple treatment options for breast cancer (BC) patients and the lack of understanding of prognostic and predictive biomarkers for breast cancer is a potential research direction for us to develop better treatments in the future. In this paper, we conducted a correlation analysis between SIK2 and clinical traits by searching numerous BRCA datasets in the GEO database. The model was constructed and validated by incorporating tumor samples from the TCGA-BRCA cohort. Surprisingly, we found differential expression of SIK2 gene in individual tumor samples from the UCSC database. Subsequently, we found significantly high expression of SIK2 in epithelial cells by comparing the differential expression of SIK2 in different cell subpopulations and performed subsequent immune infiltration and pathway correlation analysis. Differential genes in SIK2+ epithelial cells, which may be potential therapeutic targets for breast cancer. In conclusion, our results suggest that SIK2 may be a potential prognostic and predictive biomarker that could serve as an oncogenic messenger for breast cancer. This discovery of SIK2 may provide more valuable references for potential therapeutic tools for breast cancer.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Epithelial Cells/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
7.
EMBO Mol Med ; 15(12): e17719, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37966164

ABSTRACT

Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Calcium , Cell Proliferation , Melanoma/drug therapy , Reactive Oxygen Species , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology
8.
MedComm (2020) ; 4(5): e366, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37706195

ABSTRACT

Salt-inducible kinase 2 (SIK2) belongs to the serine/threonine protein kinases of the AMPK/SNF1 family, which has important roles in cell cycle, tumor, melanogenesis, neuronal damage repair and apoptosis. Recent studies showed that SIK2 regulates the macrophage polarization to make a balance between inflammation and macrophage. Macrophage is critical to initiate immune regulation, however, whether SIK2 can be involved in immune regulation is not still well understood. Here, we revealed that the protein of SIK2 was highly expressed in thymus, spleen, lung, and brain. And SIK2 protein content increased in RAW264.7 and AHH1 cells with a time and dose-dependent after-ionizing radiation (IR). Inhibition of SIK2 could promote AHH1 cells apoptosis Moreover, we used the Cre-LoxP system to construct the SIK2+/- mice, and the research on function suggested that the deficiency of SIK2 could promote the sensitivity of IR. The deficiency of SIK2 promoted the immune injury via inhibiting the maturation of T cells and B cells. Furthermore, the TCRß rearrangement was inhibited by the deficiency of SIK2. Collectively, this study demonstrated that SIK2 provides an essential function of regulating immune injury, which will provide new ideas for the treatment of immune injury-related diseases.

9.
J Obstet Gynaecol Res ; 49(8): 2000-2009, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37317594

ABSTRACT

AIM: To explore the role of salt-inducible kinase 2 (SIK2) on glucose and lipid metabolism in ovarian cancer (OC), so as to increase the understanding of potential inhibitors targeting SIK2 and lay a foundation for future precision medicine in OC patients. METHODS: We reviewed and summarized the regulation effect of SIK2 on glycolysis, gluconeogenesis, lipid synthesis, and fatty acids ß-oxidation (FAO) in OC, as well as the potential molecular mechanism and the prospects of potential inhibitors targeting SIK2 in future cancer treatments. RESULTS: Many pieces of evidence show that SIK2 is closed associated with glucose and lipid metabolism of OC. On the one hand, SIK2 enhances the Warburg effect by promoting glycolysis and inhibiting oxidative phosphorylation and gluconeogenesis, on the other hand, SIK2 regulates intracellular lipid metabolism through promoting lipid synthesis and FAO, all of which ultimately induces growth, proliferation, invasion, metastasis, and therapeutic resistance of OC. On this basis, SIK2 targeting may become a new solution for the treatment of a variety of cancer types including OC. The efficacy of some small molecule kinase inhibitors has also been demonstrated in tumor clinical trials. CONCLUSION: SIK2 displays significant effects in OC progression and treatment through regulating cellular metabolism including glucose and lipid metabolism. Therefore, future research needs to further explore the molecular mechanisms of SIK2 in other types of energy metabolism in OC, based on this to develop more unique and effective inhibitors.


Subject(s)
Ovarian Neoplasms , Protein Serine-Threonine Kinases , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Oxidative Phosphorylation , Glucose/metabolism , Lipids
10.
Mol Biol Rep ; 50(7): 5807-5816, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37219665

ABSTRACT

BACKGROUND: Eukaryotic initiation factor 5A hypusine (eIF5AHyp) stimulates the translation of proline repeat motifs. Salt inducible kinase 2 (SIK2) containing a proline repeat motif is overexpressed in ovarian cancers, in which it promotes cell proliferation, migration, and invasion. METHODS AND RESULTS: Western blotting and dual luciferase analyses showed that depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA downregulated SIK2 level and decreased luciferase activity in cells transfected with a luciferase-based reporter construct containing consecutive proline residues, whereas the activity of the mutant control reporter construct (replacing P825L, P828H, and P831Q) did not change. According to the MTT assay, GC7, which has a potential antiproliferative effect, reduced the viability of several ovarian cancer cell lines by 20-35% at high concentrations (ES2 > CAOV-3 > OVCAR-3 > TOV-112D) but not at low concentrations. In a pull-down assay, we identified eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP1 (p4E-BP1) phosphorylated at Ser 65 as downstream binding partners of SIK2, and we validated that the level of p4E-BP1(Ser 65) was downregulated by SIK2-targeting siRNA. Conversely, in ES2 cells overexpressing SIK2, the p4E-BP1(Ser 65) level was increased but decreased in the presence of GC7 or eIF5A-targeting siRNA. Finally, the migration, clonogenicity, and viability of ES2 ovarian cancer cells were reduced by GC7 treatment as well as by siRNA for eIF5A gene silencing and siRNA for SIK2 and 4E-BP1 gene silencing. Conversely, those activities were increased in cells overexpressing SIK2 or 4E-BP1 and decreased again in the presence of GC7. CONCLUSION: The depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA attenuated activation of the SIK2-p4EBP1 pathway. In that way, eIF5AHyp depletion reduces the migration, clonogenicity, and viability of ES2 ovarian cancer cells.


Subject(s)
Apoptosis , Ovarian Neoplasms , Female , Humans , Cell Line, Tumor , Cell Proliferation , Ovarian Neoplasms/genetics , Peptide Initiation Factors/genetics , RNA, Small Interfering/genetics , Eukaryotic Translation Initiation Factor 5A
11.
Redox Biol ; 59: 102571, 2023 02.
Article in English | MEDLINE | ID: mdl-36516721

ABSTRACT

Macrophages play a pivotal role in mediating inflammation and subsequent resolution of inflammation. The availability of selenium as a micronutrient and the subsequent biosynthesis of selenoproteins, containing the 21st amino acid selenocysteine (Sec), are important for the physiological functions of macrophages. Selenoproteins regulate the redox tone in macrophages during inflammation, the early onset of which involves oxidative burst of reactive oxygen and nitrogen species. SELENOW is a highly expressed selenoprotein in bone marrow-derived macrophages (BMDMs). Beyond its described general role as a thiol and peroxide reductase and as an interacting partner for 14-3-3 proteins, its cellular functions, particularly in macrophages, remain largely unknown. In this study, we utilized Selenow knock-out (KO) murine bone marrow-derived macrophages (BMDMs) to address the role of SELENOW in inflammation following stimulation with bacterial endotoxin lipopolysaccharide (LPS). RNAseq-based temporal analyses of expression of selenoproteins and the Sec incorporation machinery genes suggested no major differences in the selenium utilization pathway in the Selenow KO BMDMs compared to their wild-type counterparts. However, selective enrichment of oxidative stress-related selenoproteins and increased ROS in Selenow-/- BMDMs indicated anomalies in redox homeostasis associated with hierarchical expression of selenoproteins. Selenow-/- BMDMs also exhibited reduced expression of arginase-1, a key enzyme associated with anti-inflammatory (M2) phenotype necessary to resolve inflammation, along with a significant decrease in efferocytosis of neutrophils that triggers pathways of resolution. Parallel targeted metabolomics analysis also confirmed an impairment in arginine metabolism in Selenow-/- BMDMs. Furthermore, Selenow-/- BMDMs lacked the ability to enhance characteristic glycolytic metabolism during inflammation. Instead, these macrophages atypically relied on oxidative phosphorylation for energy production when glucose was used as an energy source. These findings suggest that SELENOW expression in macrophages may have important implications on cellular redox processes and bioenergetics during inflammation and its resolution.


Subject(s)
Selenium , Selenoprotein W , Mice , Animals , Selenoprotein W/genetics , Selenoprotein W/metabolism , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Macrophages/metabolism , Oxidation-Reduction , Inflammation/genetics
12.
Mol Divers ; 27(3): 1101-1121, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35727438

ABSTRACT

Diabetes mellitus (DM) is one of the major health problems worldwide. WHO have estimated that 439 million people may have DM by the year 2030. Several classes of drugs such as sulfonylureas, meglitinides, thiazolidinediones etc. are available to manage this disease, however, there is no cure for this disease. Salt inducible kinase 2 (SIK2) is expressed several folds in adipose tissue than in normal tissues and thus SIK2 is one of the attractive targets for DM treatment. SIK2 inhibition improves glucose homeostasis. Several analogues have been reported and experimentally proven against SIK for DM treatment. But, identifying potential SIK2 inhibitors with improved efficacy and good pharmacokinetic profiles will be helpful for the effective treatment of DM. The objective of the present study is to identify selective SIK2 inhibitors with good pharmacokinetic profiles. Due to the unavailability of SIK2 structure, the modeled structure of SIK2 will be an important to understand the atomic level of SIK2 inhibitors in the binding site pocket. In this study, different molecular modeling studies such as Homology Modeling, Molecular Docking, Pharmacophore-based virtual screening, MD simulations, Density Functional Theory calculations and WaterMap analysis were performed to identify potential SIK2 inhibitors. Five molecules from different databases such as Binding_4067, TosLab_837067, NCI_349155, Life chemicals_ F2565-0113, Enamine_7623111186 molecules were identified as possible SIK2 inhibitors.


Subject(s)
Diabetes Mellitus , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Binding Sites
13.
Int J Biol Sci ; 18(15): 5943-5962, 2022.
Article in English | MEDLINE | ID: mdl-36263177

ABSTRACT

The progression of clear cell renal cell carcinoma (ccRCC) remains a major challenge in clinical practice, and elucidation of the molecular drivers of malignancy progression is critical for the development of effective therapeutic targets. Recent studies have demonstrated that N6-methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA and plays a key role in tumorigenesis and progression. However, the biological roles and underlying mechanisms of m6A-mediated autophagy in cancers especially in ccRCC remain poorly elucidated. m6A dot blot assay, m6A RNA methylation assay kit and immunofluorescence analysis were used to profile m6A levels in tissue samples and their correlation with autophagic flux. Expression patterns and clinical significance of fat mass and obesity-associated protein (FTO) were determined through bioinformatics analysis, real-time PCR, western blotting, immunohistochemistry. RNA-seq, MeRIP-seq, MeRIP-qRT-PCR, RIP-qRT-PCR, transmission electron microscopy, immunofluorescence analysis and luciferase reporter assay were used to investigate the underlying mechanism of the FTO-autophagy axis. The role of FTO and autophagy in ccRCC progression was evaluated both in vitro and in vivo. Here we found that m6A modification was suppressed and closely related to autophagic flux in ccRCC. Elevated FTO was inhibited by rapamycin, whereas silencing FTO enhanced autophagic flux and impaired ccRCC growth and metastasis. SIK2 was identified as a functional target of m6A-mediated autophagy, thereby prompting FTO to play a conserved and important role in inhibiting autophagy and promoting tumorigenesis through an m6A-IGF2BP2 dependent mechanism. Moreover, the small molecule inhibitor FB23-2 targeting FTO inhibited tumor growth and prolonged survival in the patient-derived xenograft (PDX) model mice, suggesting that FTO is a potential effective therapeutic target for ccRCC. Our findings uncovered the crucial role of FTO/autophagy/SIK2 axis in modulating the progression of ccRCC, suggesting that FTO may serve as a valuable prognostic biomarker and promising therapeutic target in ccRCC.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Autophagy/genetics , Biomarkers , Carcinogenesis/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Kidney Neoplasms/metabolism , RNA Stability , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Sirolimus
14.
J Biol Chem ; 298(12): 102644, 2022 12.
Article in English | MEDLINE | ID: mdl-36309093

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Animals , Mice , Bleomycin , Fibrosis , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/genetics , Lung Injury/metabolism , Protein Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 1082-1088, 2022 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-35869774

ABSTRACT

OBJECTIVE: To explore the role of salt-inducible kinase 2 (SIK2) in myocardial ischemia-reperfusion (IR) injury in rats. METHODS: Fifteen male SD rats were randomized equally into sham operation group, myocardial IR model group, and SIK2 inhibitor group (in which the rats were treated with intravenous injection of 10 mg/kg bosutinib via the left femoral vein 24 h before modeling). Ultrasound was used to detect the cardiac function of the rats, and myocardial pathologies were observed with HE staining. Transmission electron microscopy was used to observe autophagy of myocardial cells, and Western blotting was performed to detect the contents of the autophagy-related proteins SIK2, LC3B, Beclin-1, p62 and the expressions of p-mTOR, mTOR, p-ULK1, and ULK1 in myocardial tissue. RESULTS: Myocardial IR injury significantly increased the number of autophagosomes (P < 0.05) and the expression of SIK2 protein (P < 0.01) in the myocardial tissues. Treatment with bosutinib before modeling obviously lowered the expression of SIK2 protein (P < 0.01), alleviated myocardial pathologies, and reduced the number of autophagosomes (P < 0.05) in the myocardial tissue. The rats with myocardial IR injury showed obviously lowered LVEF and FS values (P < 0.001), which were significantly improved by bosutinib treatment (P < 0.05); no significant difference was detected in IVSDd or LVPWDd among the 3 groups (P > 0.05). Myocardial IR injury obviously increased the expressions of LC3-II/LC3-I and Beclin-1 proteins and lowered the expression of p62 protein (P < 0.01), and these changes were significantly rescued by bosutinib treatment (P < 0.05). The rat models of myocardial IR injury showed significantly increased expression of p-ULK1 (Ser757) (P < 0.01) and lowered expression of p-mTOR protein (P < 0.0001) in the myocardium, and these changes were obviously reversed by bosutinib (P < 0.01 or 0.05); there was no significant difference in mTOR and ULK1 expressions among the 3 groups (P > 0.05). CONCLUSION: SIK2 may promote autophagy through the mTOR/ULK1 signaling pathway, and inhibiting SIK2 can reduce abnormal autophagy and alleviate myocardial IR injury in rats.


Subject(s)
Myocardial Reperfusion Injury , Animals , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Down-Regulation , Male , Protein Serine-Threonine Kinases , Rats , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
16.
Kaohsiung J Med Sci ; 38(9): 869-878, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35791807

ABSTRACT

Excessive hepatic lipid accumulation is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A previous study showed that the circular RNA (circRNA) PTK2 was significantly downregulated in NAFLD mice. However, the detailed function of circ PTK2 in NAFLD remains unclear. A high-fat diet (HFD) was used to establish a mouse model of NAFLD, and free fatty acid (FFA) treatment was used to establish an in vitro model of NAFLD. Oil red O staining was used to evaluate lipid accumulation. The pathological changes in mice were observed by HE staining. Western blotting and RT-qPCR were applied to assess protein and mRNA levels, respectively. A dual luciferase reporter assay and RIP were used to explore the relationship among circ PTK2, miR-200c and SIK2. Circ PTK2 and SIK2 were downregulated and miR-200c was upregulated in NAFLD. Upregulation of circ PTK2 reversed lipid accumulation in FFA-treated HepG2 cells. Moreover, circ PTK2 bound to miR-200c, and SIK2 was identified as the direct target of miR-200c. Moreover, the miR-200c inhibitor-induced decrease in lipid accumulation was reversed by SIK2 knockdown. Furthermore, the impact of circ PTK2 overexpression on PI3K/Akt signaling was partially reversed by SIK2 silencing. Circ PTK2 overexpression alleviates NAFLD development via the miR-200c/SIK2/PI3K/Akt axis. Thus, our work might provide new methods for NAFLD treatment.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Circular , Animals , Focal Adhesion Kinase 1 , Lipid Metabolism/genetics , Lipids , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics
17.
Front Pharmacol ; 13: 683898, 2022.
Article in English | MEDLINE | ID: mdl-35586047

ABSTRACT

Previous studies have shown that Salt-induced kinase-2(SIK2) is involved in the regulation of various energy-metabolism-related reactions, and it also can regulate angiogenesis after cerebral ischemia-reperfusion. However, it is unclear whether SIK2 can regulate energy metabolism in cerebral ischemia-reperfusion injury. As mitochondria plays an important role in energy metabolism, whether SIK2 regulates energy metabolism through affecting mitochondrial changes is also worth to be explored. In this study, rats were treated with adeno-associated virus-SIK2-Green fluorescent protein (AAV-SIK2-GFP) for the overexpression of SIK2 before middle cerebral artery occlusion (MCAO). We found that SIK2 overexpression could alleviate the neuronal damage, reduce the area of cerebral infarction, and increase the adenosine triphosphate (ATP) content, which could promote the expression of phosphorylated-mammalian target of rapamycin-1 (p-mTORC1), hypoxia-inducible factor-1α (HIF-1α), phosphatase and tensin homologue-induced putative kinase 1 (PINK1) and E3 ubiquitinligating enzyme (Parkin). Transmission electron microscopy revealed that SIK2 overexpression enhanced mitochondrial autophagy. It is concluded that SIK2 can ameliorate neuronal injury and promote the energy metabolism by regulating the mTOR pathway during cerebral ischemia-reperfusion, and this process is related to mitochondrial autophagy.

18.
BMC Pulm Med ; 22(1): 140, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35410283

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a fatal lung disease with complex pathogenesis and limited effective therapies. Salt-inducible kinase 2 (SIK2) is a kinase that phosphorylates CRTCs and regulates many physiological processes. However, the role of SIK2 on pulmonary fibrosis remains unclear, and whether SIK2 inhibitor can attenuate pulmonary fibrosis is unknown. METHOD: We subjected human fetal lung fibroblasts (HFLs) to transforming growth factor-ß1 (5 ng/mL) for 12 h, and examined the expression of SIK2, CRTCs and pCRTCs in fibroblasts by western-blot. To address the roles of SIK2 and CRTCs involved in the progression of pulmonary fibrosis, HFLs were treated with a small-molecule inhibitor ARN-3236 or by siRNA-mediated knockdown of SIK2 expression. Pulmonary fibrosis model was established with mice by exposing to bleomycin, and assessed by H&E and Masson's trichrome staining. COL1A and α-SMA distributions were detected in lung tissues by immunohistochemical staining. RESULTS: We discovered that SIK2 and phosphorylated-CRTC2 were expressed at a low basal level in normal lung tissues and quiescent fibroblasts, but increased in fibrotic lung tissues and activated fibroblasts. Inhibition of SIK2 by ARN-3236 prevented the fibroblasts differentiation and extracellular matrix expression in HFLs and attenuated bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inactivation of SIK2 resulted in the dephosphorylation and nuclear translocation of CRTC2. Within the nucleus, CRTC2 binds to CREB, promoting CREB-dependent anti-fibrotic actions. CONCLUSION: In conclusion, our results elucidated a previously unexplored role of SIK2 in pulmonary fibrosis, and identified SIK2 as a new target for anti-fibrosis medicines.


Subject(s)
Bleomycin , Pulmonary Fibrosis , Animals , Bleomycin/toxicity , Fibroblasts/metabolism , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , RNA, Small Interfering/adverse effects , RNA, Small Interfering/metabolism , Transforming Growth Factor beta1/metabolism
19.
Mol Oncol ; 16(13): 2558-2574, 2022 07.
Article in English | MEDLINE | ID: mdl-35278271

ABSTRACT

Salt-inducible kinase 2 (SIK2; also known as serine/threonine-protein kinase SIK2) is overexpressed in several cancers and has been implicated in cancer progression. However, the mechanisms by which SIK2 regulates cancer cell motility, migration and metastasis in ovarian cancer have not been fully discovered. Here, we identify that SIK2 promotes ovarian cancer cell motility, migration and metastasis in vitro and in vivo. Mechanistically, SIK2 regulated cancer cell motility and migration by myosin light chain kinase, smooth muscle (MYLK)-meditated phosphorylation of myosin light chain 2 (MYL2). SIK2 directly phosphorylated MYLK at Ser343 and activated its downstream effector MYL2, promoting ovarian cancer cell motility and metastasis. In addition, we found that adipocytes induced SIK2 phosphorylation at Ser358 and MYLK phosphorylation at Ser343, enhancing ovarian cancer cell motility. Moreover, SIK2 protein expression was positively correlated with the expression of MYLK-pS343 in ovarian cancer cell lines and tissues. The co-expression of SIK2 and MYLK-pS343 was associated with reduced median overall survival in human ovarian cancer samples. Taken together, SIK2 positively regulates ovarian cancer motility, migration and metastasis, suggesting that SIK2 is a potential candidate for ovarian cancer treatment.


Subject(s)
Calcium-Binding Proteins , Myosin-Light-Chain Kinase , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Calcium-Binding Proteins/chemistry , Cell Movement , Female , Humans , Myosin-Light-Chain Kinase/chemistry , Neoplasm Metastasis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphorylation , Protein Serine-Threonine Kinases/genetics
20.
Biochem Biophys Res Commun ; 599: 1-8, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35158201

ABSTRACT

Acute lung injury (ALI) is a significant cause of morbidity and mortality worldwide. To search for a new treatment for acute lung injury, we investigated the effect of escitalopram on lipopolysaccharide (LPS)-induced ALI. Our results showed that escitalopram inhibited salt-inducible kinase 2 (SIK2) activity (IC50 = 6.36 ± 0.93 µM) and triggered histone deacetylase 4 (HDAC4) dephosphorylation. Following its dephosphorylation, HDAC4 translocated into the nucleus, promoted deacetylation and cytoplasmic shuttling of p65, thus inhibited LPS-induced pro-inflammatory cytokine production. Moreover, escitalopram markedly ameliorated the inflammatory responses, reduced neutrophils infiltration and attenuated LPS-induced pulmonary injury in mice. Taken together, we identified a previously unexplored role for escitalopram in SIK2/HDAC4/NF-κB pathway, therefore escitalopram may be considered as a new treatment for ALI.


Subject(s)
Acute Lung Injury/drug therapy , Escitalopram/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Active Transport, Cell Nucleus/drug effects , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Drug Repositioning , Histone Deacetylases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL