Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Virus Res ; 336: 199197, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37574135

ABSTRACT

We investigated in silico the secondary structure of the region encompassing DIS, SD and Psi hairpins in HIV-1 genomes of rare groups N, O and P, HIV-2 genomes and SIV genomes from chimpanzees, gorillas and monkeys. We found that the structure of this region in SIVcpzptt genomes of the 1st and the 2nd clusters is similar to that in HIV-1 genomes of groups M and N, respectively. Further, the structure of the region encompassing DIS, SD and Psi hairpins is similar in HIV-1 genomes of groups O and P and SIVgor genomes. Here we report that the DIS hairpin and truncated Psi hairpin are conserved in all HIV-1 and SIVcpz/gor genomes studied, while only the sequence of the splice donor site, but not the architecture of the SD hairpin involving this signal is conserved in HIV-1N/O/P and SIVcpz/gor genomes. A study on the 5' leader structure in genomes of 28 different SIV lineages infecting monkeys showed that the domain closed by U5-AUG duplex can form in all these genomes. This domain mainly consists of 2 subdomains, one of which includes the signal PBS (PBS subdomain) and another contains a putative DIS hairpin (DIS subdomain). DIS subdomains contain 1-8 hairpins. None of them is similar to those in HIV-1 or SIVcpz/gor genomes. The palindrome GUGCAC was found only in SIVdrl/mnd-2, the GACGC-GCGUC duplex (Sakuragi et al., 2012) - only in SIVrcm/drl/mnd-2 and a putative 5' G-quadruplex - in SIVdeb/drl/rcm/stm genomes. In genomes of eight SIV lineages, DIS hairpin has palindrome UGCGCA. Studies on the 5' leader in 64 HIV-2 genomes of different subtypes showed, in particular, that this region has sequences of a putative 5' G-quadruplex and a putative duplex similar to the GACGC-GCGUC duplex. The secondary structures of the region encompassing DIS, SD and Psi hairpins in HIV-2 genomes of subtype B and recombinant 01_AB are similar and differ from that in genomes of subtype A.

2.
J Med Primatol ; 51(5): 288-291, 2022 10.
Article in English | MEDLINE | ID: mdl-36030391

ABSTRACT

Critical genetic adaptations needed for SIV chimpanzee to evolve into HIV-1 are not well understood. Using humanized mice, we mimicked the evolution of SIVcpzLB715 into HIV-1 Group M over the course of four generations. Higher initial viral load, increased CD4+ T-cell decline, and nonsynonymous substitutions arose suggesting viral evolution.


Subject(s)
HIV-1 , Rodent Diseases , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Disease Models, Animal , Evolution, Molecular , HIV-1/genetics , Mice , Pan troglodytes/genetics , Simian Immunodeficiency Virus/genetics , Viral Load
3.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32907979

ABSTRACT

Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytestroglodytes (SIVcpzPtt). The related subspecies Pan troglodytesschweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid Proteins/chemistry , Capsid Proteins/drug effects , Capsid Proteins/metabolism , Capsid/drug effects , Simian Immunodeficiency Virus/drug effects , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/metabolism , Animals , Binding Sites , Capsid Proteins/genetics , Cell Line , Cyclophilin A/genetics , Cyclophilin A/metabolism , Gene Knockout Techniques , HEK293 Cells , HIV-1 , HeLa Cells , Humans , Indazoles/pharmacology , Indoles/pharmacology , Leukocytes, Mononuclear/virology , Macrophages/virology , Models, Molecular , Pan troglodytes/virology , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Protein Conformation , Protein Interaction Domains and Motifs , Pyridines/pharmacology , Sequence Alignment , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/chemistry , Simian Immunodeficiency Virus/genetics , Zoonoses , mRNA Cleavage and Polyadenylation Factors/genetics
4.
Front Microbiol ; 11: 1889, 2020.
Article in English | MEDLINE | ID: mdl-32849468

ABSTRACT

The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.

5.
J Med Primatol ; 49(5): 284-287, 2020 10.
Article in English | MEDLINE | ID: mdl-33460210

ABSTRACT

HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.


Subject(s)
Ape Diseases/virology , HIV-1/genetics , Mutation , Pan troglodytes , Simian Immunodeficiency Virus/genetics , Animals , Disease Models, Animal , Evolution, Molecular
6.
J Med Primatol ; 49(1): 40-43, 2020 02.
Article in English | MEDLINE | ID: mdl-31576587

ABSTRACT

HIV-1 evolved from its progenitor SIV strains, but details are lacking on its adaptation to the human host. We followed the evolution of SIVcpz in humanized mice to mimic cross-species transmission. Increasing viral loads, CD4+ T-cell decline, and non-synonymous mutations were seen in the entire genome reflecting viral adaptation.


Subject(s)
CD4 Lymphocyte Count , Evolution, Molecular , Genome, Viral , HIV-1/physiology , Simian Immunodeficiency Virus/physiology , Viral Load , Animals , Biological Evolution , HIV Infections/veterinary , HIV Infections/virology , HIV-1/genetics , Mice , Mice, Transgenic , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics
7.
Am J Primatol ; 80(1)2018 01.
Article in English | MEDLINE | ID: mdl-26676710

ABSTRACT

Enteric dysbiosis is a characteristic feature of progressive human immunodeficiency virus type 1 (HIV-1) infection but has not been observed in simian immunodeficiency virus (SIVmac)-infected macaques, including in animals with end-stage disease. This has raised questions concerning the mechanisms underlying the HIV-1 associated enteropathy, with factors other than virus infection, such as lifestyle and antibiotic use, implicated as playing possible causal roles. Simian immunodeficiency virus of chimpanzees (SIVcpz) is also associated with increased mortality in wild-living communities, and like HIV-1 and SIVmac, can cause CD4+ T cell depletion and immunodeficiency in infected individuals. Given the central role of the intestinal microbiome in mammalian health, we asked whether gut microbial constituents could be identified that are indicative of SIVcpz status and/or disease progression. Here, we characterized the gut microbiome of SIVcpz-infected and -uninfected chimpanzees in Gombe National Park, Tanzania. Subjecting a small number of fecal samples (N = 9) to metagenomic (shotgun) sequencing, we found bacteria of the family Prevotellaceae to be enriched in SIVcpz-infected chimpanzees. However, 16S rRNA gene sequencing of a larger number of samples (N = 123) failed to show significant differences in both the composition and diversity (alpha and beta) of gut bacterial communities between infected (N = 24) and uninfected (N = 26) chimpanzees. Similarly, chimpanzee stool-associated circular virus (Chi-SCV) and chimpanzee adenovirus (ChAdV) identified by metagenomic sequencing were neither more prevalent nor more abundant in SIVcpz-infected individuals. However, fecal samples collected from SIVcpz-infected chimpanzees within 5 months before their AIDS-related death exhibited significant compositional changes in their gut bacteriome. These data indicate that SIVcpz-infected chimpanzees retain a stable gut microbiome throughout much of their natural infection course, with a significant destabilization of bacterial (but not viral) communities observed only in individuals with known immunodeficiency within the last several months before their death. Am. J. Primatol. 80:e22515, 2018. © 2015 Wiley Periodicals, Inc.


Subject(s)
Ape Diseases/microbiology , Bacteria/classification , Gastrointestinal Microbiome , Pan troglodytes , Simian Acquired Immunodeficiency Syndrome/microbiology , Adenoviruses, Simian/genetics , Animals , Ape Diseases/virology , Bacteria/genetics , DNA Viruses/genetics , Feces/microbiology , Feces/virology , Female , Male , Metagenome , RNA, Ribosomal, 16S , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus , Tanzania
8.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29212937

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.


Subject(s)
Evolution, Molecular , HIV-1/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Zoonoses/transmission , Animals , Animals, Wild/virology , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Pan troglodytes/virology , Phylogeny , RNA, Viral/genetics , Viral Load , Virus Replication
9.
Retrovirology ; 14(1): 35, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28576126

ABSTRACT

BACKGROUND: Simian immunodeficiency virus of chimpanzees (SIVcpz), the progenitor of human immunodeficiency virus type 1 (HIV-1), is associated with increased mortality and AIDS-like immunopathology in wild-living chimpanzees (Pan troglodytes). Surprisingly, however, similar findings have not been reported for chimpanzees experimentally infected with SIVcpz in captivity, raising questions about the intrinsic pathogenicity of this lentivirus. FINDINGS: Here, we report progressive immunodeficiency and clinical disease in a captive western chimpanzee (P. t. verus) infected twenty years ago by intrarectal inoculation with an SIVcpz strain (ANT) from a wild-caught eastern chimpanzee (P. t. schweinfurthii). With sustained plasma viral loads of 105 to 106 RNA copies/ml for the past 15 years, this chimpanzee developed CD4+ T cell depletion (220 cells/µl), thrombocytopenia (90,000 platelets/µl), and persistent soft tissue infections refractory to antibacterial therapy. Combination antiretroviral therapy consisting of emtricitabine (FTC), tenofovir disoproxil fumarate (TDF), and dolutegravir (DTG) decreased plasma viremia to undetectable levels (<200 copies/ml), improved CD4+ T cell counts (509 cell/µl), and resulted in the rapid resolution of all soft tissue infections. However, initial lack of adherence and/or differences in pharmacokinetics led to low plasma drug concentrations, which resulted in transient rebound viremia and the emergence of FTC resistance mutations (M184V/I) identical to those observed in HIV-1 infected humans. CONCLUSIONS: These data demonstrate that SIVcpz can cause immunodeficiency and other hallmarks of AIDS in captive chimpanzees, including P. t. verus apes that are not naturally infected with this virus. Moreover, SIVcpz-associated immunodeficiency can be effectively treated with antiretroviral therapy, although sufficiently high plasma concentrations must be maintained to prevent the emergence of drug resistance. These findings extend a growing body of evidence documenting the immunopathogenicity of SIVcpz and suggest that experimentally infected chimpanzees may benefit from clinical monitoring and therapeutic intervention.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Ape Diseases/drug therapy , Ape Diseases/virology , Pan troglodytes/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Animals , Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/blood , Antiretroviral Therapy, Highly Active/adverse effects , CD4 Lymphocyte Count , Drug Resistance, Viral , Male , Mutation , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , Viral Load/drug effects
10.
Viruses ; 8(7)2016 07 07.
Article in English | MEDLINE | ID: mdl-27399760

ABSTRACT

Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity.


Subject(s)
Gene Products, nef/metabolism , HIV-1/physiology , Simian Immunodeficiency Virus/physiology , Virus Replication , Animals , Cell Line , Frameshift Mutation , Gene Knockout Techniques , Gene Products, gag/metabolism , Gene Products, nef/genetics , Gene Products, pol/metabolism , Humans , Pan troglodytes , Protein Binding , Simian Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL