Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.474
Filter
1.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095173

ABSTRACT

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Subject(s)
Electrodes , Iron , Nitrates , Phosphates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Nitrates/chemistry , Iron/chemistry , Phosphates/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Electrochemical Techniques/methods
2.
Methods Mol Biol ; 2852: 123-134, 2025.
Article in English | MEDLINE | ID: mdl-39235740

ABSTRACT

Properly using controllable atmospheric containers can facilitate investigations of the survival abilities and physiological states of key and emerging-foodborne pathogens under recreated applicable food processing environmental conditions. Notably, saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.


Subject(s)
Food Handling , Food Microbiology , Food Handling/methods , Foodborne Diseases/microbiology , Microbial Viability , Bacteria/growth & development , Humans
3.
Front Plant Sci ; 15: 1425103, 2024.
Article in English | MEDLINE | ID: mdl-39239193

ABSTRACT

Existing seed germination detection technologies based on deep learning are typically optimized for hydroponic breeding environments, leading to a decrease in recognition accuracy in complex soil cultivation environments. On the other hand, traditional manual germination detection methods are associated with high labor costs, long processing times, and high error rates, with these issues becoming more pronounced in complex soil-based environments. To address these issues in the germination process of new cucumber varieties, this paper utilized a Seed Germination Phenotyping System to construct a cucumber germination soil-based experimental environment that is more closely aligned with actual production. This system captures images of cucumber germination under salt stress in a soil-based environment, constructs a cucumber germination dataset, and designs a lightweight real-time cucumber germination detection model based on Real-Time DEtection TRansformer (RT-DETR). By introducing online image enhancement, incorporating the Adown downsampling operator, replacing the backbone convolutional block with Generalized Efficient Lightweight Network, introducing the Online Convolutional Re-parameterization mechanism, and adding the Normalized Gaussian Wasserstein Distance loss function, the training effectiveness of the model is enhanced. This enhances the model's capability to capture profound semantic details, achieves significant lightweighting, and enhances the model's capability to capture embryonic root targets, ultimately completing the construction of the RT-DETR-SoilCuc model. The results show that, compared to the RT-DETR-R18 model, the RT-DETR-SoilCuc model exhibits a 61.2% reduction in Params, 61% reduction in FLOP, and 56.5% reduction in weight size. Its mAP@0.5, precision, and recall rates are 98.2%, 97.4%, and 96.9%, respectively, demonstrating certain advantages over the You Only Look Once series models of similar size. Germination tests of cucumbers under different concentrations of salt stress in a soil-based environment were conducted, validating the high accuracy of the RT-DETR-SoilCuc model for embryonic root target detection in the presence of soil background interference. This research reduces the manual workload in the monitoring of cucumber germination and provides a method for the selection and breeding of new cucumber varieties.

4.
Tree Physiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231271

ABSTRACT

None declared.Conflict of interestSoil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological, and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type (WT) under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with WT under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase, ascorbate peroxidase activities and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity, and anion transport. Among the 1056 differentially expressed genes, genes related to photosystemIand photosystemIIwere up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.

5.
Food Chem X ; 23: 101722, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39229615

ABSTRACT

This study examined the impact of varying salt concentrations on microbiota, physicochemical properties, and metabolites in a secondary fortified fermentation process using multi-omics techniques. It aimed to determine the influence of salt stress on microbiota shifts and metabolic activities. The findings demonstrated that moderate salt reduction (MS) was found to enhance moromi's flavor and quality, while mitigating the negative effects of excessive low salt (LS). MS samples had 1.22, 1.13, and 2.92 times more amino acid nitrogen (AAN), non-volatiles, and volatiles, respectively, than high salt (HS) samples. In contrast, lactic acid and biogenic amines in LS samples were 1.56 g/100 g and 4115.11 mg/kg, respectively, decreasing to 0.15 g/100 g and 176.76 mg/kg in MS samples. Additionally, the contents of ethanol and small peptides increased in MS due to the growth of specific functional microorganisms such as Staphylococcus gallinarum, Weissella confusa, and Zygosaccharomyces rouxii, while food-borne pathogens were inhibited. Network analysis revealed that the core microbial interactions were enhanced in MS samples, promoting a balanced fermentation environment. Redundancy analysis (RDA) and correlation analyses underscored that the physicochemical properties significantly impacted bacterial community structure and the correlations between key microbes and flavor compounds. These findings provided a theoretical foundation for developing innovative reduced-salt fermentation techniques, contributing to the sustainable production of high-quality soy sauce.

6.
Proc Natl Acad Sci U S A ; 121(37): e2400654121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236238

ABSTRACT

The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mechanotransduction, Cellular , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Animals , Caenorhabditis elegans/metabolism , Mechanotransduction, Cellular/physiology , Single Molecule Imaging , Protein Binding , Cadherins/metabolism , Cadherins/chemistry , Cadherins/genetics , Adherens Junctions/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Cytoskeletal Proteins , alpha Catenin
7.
J Colloid Interface Sci ; 678(Pt B): 419-430, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39255599

ABSTRACT

CO2 storage in deep saline aquifers is an effective strategy for reducing greenhouse gas emission. However, salt precipitation triggered by evaporation of water into injected dry CO2 causes injectivity reduction. Predicting the distribution of precipitated salts and their impact on near-well permeability remains challenging. Therefore, a detailed investigation of the interactions between salt precipitation and porous domain is essential for of revealing the mechanisms of pore blockage due to salt crystallization. Through series of microfluidic experiments, direct observations, coupled with detailed imaging processing, form the basis for explaining these phenomena and provide a relationship between water and salt saturations, highlighting the critical roles played by local capillary-driven flow and water film along grains in influencing water relocation. The results reveal two distinct types of salt crystallization: occurring inside the brine with smooth edges and at the CO2-brine interface with rough edges. Furthermore, the impact of local heterogeneity and surface wettability on salt precipitation patterns is discussed. The transition region between the porous domains and inlet/outlet channels exhibits brine backflow and a larger amount of salt accumulation. This paper presents a comprehensive analysis of the dynamic process of salt dry-out occurring during CO2 injection at the pore scale.

8.
Plant Physiol Biochem ; 216: 109111, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39255612

ABSTRACT

Nanomaterials as an emerging tool are being used to improve plant's net photosynthetic rate (AN) when suffering salt stress, but the underlying mechanisms remain unclear. To clarify this, a hydroponic experiment was conducted to study the effects of polyacrylic acid coated nanoceria (PNC) on the AN of salt-stressed cotton and related intrinsic mechanisms. Results showed that the PNC-induced AN enhancement of salt-stressed leaves was strongly facilitated by the mesophyll conductance to CO2 (gm). Further analysis showed that the PNC-induced improvement of gm was related to the increased chloroplast surface area exposed to intercellular airspaces, which was attribute to the increased mesophyll surface area exposed to intercellular airspaces and chloroplast number due to the increased K+ content and decreased reactive oxygen species level in salt-stressed leaves. Interestingly, our results also showed that PNC-induced variations in cell wall composition of salt-stressed cotton leaves strongly influenced gm, especially, hemicellulose and pectin. Moreover, the proportion of pectin in cell wall composition played a more important role in determining gm. Our study demonstrated for the first time that nanoceria, through alterations to anatomical traits and cell wall composition, drove gm enhancement, which ultimately increased AN of salt-stressed leaves.

9.
Plant Sci ; 349: 112228, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218307

ABSTRACT

Members of the MT-A70 family are key catalytic proteins involved in m6A methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology. Compared with the wild-type (WT), the CR-slmtc mutants exhibited decreased seed size and slower growth rates during the seedling stage, along with weaker salt tolerance and significant downregulation of stress-related genes, such as PR1, PR5, and P5CS. The qRT-PCR results revealed that the expression levels of genes involved in auxin biosynthesis (FZY1, FZY3, and FZY4) and polar transport (PIN1, PIN4, and PIN8) were lower in CR-slmtc plants than in the WT plants. In addition, yeast two-hybrid assays showed that SlMTC could interact with SlMTA, a Class A member of the MT-A70 family, providing insights into the potential mode of action of SlMTC in tomatoes. Overall, our findings indicate the critical role of SlMTC in plant growth and development as well as in response to salt stress.

10.
Chem Biol Interact ; 403: 111216, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218371

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.

11.
Food Chem ; 463(Pt 1): 141029, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39241428

ABSTRACT

The enhancement of saltiness induced by odrants perceived from the retronasal cavity during Larou oral processing was analyzed. During the oral processing of Xiangtan Larou, the smoky attribute was the dominant when chewing 0-15 times, followed by the savory (15-24 times) and meaty (24-42 times). Partial least squares analysis predicted 33 aroma compounds from the retronasal cavity significantly (p < 0.05) contributing to the aroma perception. A total of 12 aroma compounds with saltiness-enhancement ability were confirmed by odorant-NaCl mixture model experiments. Results revealed that 2-methoxy-4-vinylphenol (1.00-1000.00 µg/L) had the strongest enhancing effect on saltiness at NaCl (2969.85 mg/L), followed by diallyl sulfide (0.156-2.50 µg/L), 2,5-dimethylthiophene (0.156-50.00 µg/L), 2,6-dimethylphenol (1.00-100.00 µg/L), 2,5-dimethylpyrazine (0.391-50.00 µg/L), and 2,3-butanedione (0.50-100.0 µg/L). The sulfur-containing, nitrogen-containing, and phenolic odorants with savory, roasty, sulfide, meaty or smoky, attributes showed the better ability in saltiness enhancement.

12.
Biomed Pharmacother ; 179: 117378, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241564

ABSTRACT

The prevalence of infections by methicillin-resistant Staphylococcus aureus (MRSA) has led to dramatically increased mortality and threated the public health worldwide. Pleuromutilin compound 14-O-[(4-(pyrrolidine-1-yl)-6-methylpyrimidine-2-yl) thioacetyl] mutilin (PMTM) is a new antibacterial agent with excellent antibacterial efficacy against Gram positive bacteria. For further developing PMTM as a potential drug against MRSA infections, the in vitro antibacterial efficacy and preclinical safety were explored in this study. The results revealed that PMTM presented the higher anti-MRSA activity, increasing post-antibiotic effect (PAE) and limited potential to develop resistance. In safety evaluation, PMTM demonstrated low cytotoxicity, poor hemolytic activity, tolerable oral acute toxic effects in rats, devoid of mutagenic response and weak inhibitory potential on CYP3A4, but displayed moderate potential hERG K+ channel inhibition. Furthermore, two salts of PMTM with sulfuric acid and hydrochloric acid were prepared and confirmed. The sulfate salt of PMTM exhibited the highest solubility based on powder dissolution experiments and was chosen to evaluate pharmacokinetics properties, in which it displayed improved mouse pharmacokinetics parameters and oral bioavailability. The present study successfully provides a good foundation of PMTM for new antibacterial drug development.

13.
Plant Physiol Biochem ; 216: 109075, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39241632

ABSTRACT

Salt stress affects the growth of rice, which reduces grain yield. However, the mechanism of the rice response to salt stress is not fully understood. The rice salt tolerance 31 (rst31) mutant exhibits longer shoots and greater dry weight than wild type (WT) plants under salt stress conditions. Through map-based cloning and genetic complementation methods, we determined that RST31 encodes a half-size ABCG transporter protein, ABCG18. We showed that mutation of RST31 reduces DNA damage under salt stress, with less accumulation of reactive oxygen species (ROS). The deficiency of RST31 suppressed the root-to-shoot transport of cytokinin, which resulted in a decrease in cytokinin content in the shoot and an increase in cytokinin content in the root. ROS accumulated abundantly in WT and rst31 mutant plants after exogenous treatment with trans-zeatin, reducing rst31 tolerance of salt stress. Collectively, our results suggest that high cytokinin level in shoots leads to an increase in ROS content and severe DNA damage under salt stress, which lead to sensitivity to salt stress. These findings enhance our understanding of plant responses to salt stress through cytokinin pathways.

14.
Int J Biol Macromol ; 279(Pt 2): 135335, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39242001

ABSTRACT

The polyelectrolyte gum from Triumfetta cordifolia stem bark has recently come to the fore for its remarkable potential as an emulsifier and stabilizer for aqueous formulations. This paper presents the rheological study of T. cordifolia gum aqueous solutions in the concentrated regime (C > C** = 0.14 % w/w). To this end, both flow and oscillation tests were performed on T. cordifolia gum solutions at two distinct concentrations belonging to the concentrated regime: at 0.2 % w/w (close to C**) and at 0.7 % w/w (far above C**). The effect of temperature, pH and added salts (NaCl, CaCl2 and AlCl3) on gum viscoelastic parameters were investigated, revealing associative interactions. Under specific conditions, several remarkable and complex phenomena were observed, such as over-structuring induced by temperature, anti-thixotropy, gelation, syneresis and salting-out induced by salt addition. The charged structure of T. cordifolia gum (weak polyelectrolyte), the high divalent metal content and the presence of associative groups in its network were demonstrated as the major factors responsible for these phenomena. These findings form the basis for the structure-property relationships of T. cordifolia gum and may open up to further investigations for this gum of great potential in many fields of applications.

15.
AAPS PharmSciTech ; 25(7): 210, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242368

ABSTRACT

Torsemide is a long acting pyridine sulfonylurea diuretic. Torsemide hydrochloride is widely used now, there are only a few organic acid salts reported. Cocrystallization with organic acids is an effective way to improve its solubility. Here, we reported maleate and phthalate of torsemide, in which the organic acid lost a proton transferring to the pyridine of torsemide, and torsemide interacted with organic acid through N+ - H⋯O- hydrogen bond to form salts crystal. Surprisingly, maleate showed a clear "spring" pattern in apparent solubility, whereas phthalate had a "spring-parachute" effect. Both crystalline salts kept a higher solubility than torsemide without falling. The "spring-parachute" effect of crystalline salts promoted rapid dissolution of torsemide and kept a high concentration, thereby increasing its bioavailability.


Subject(s)
Crystallization , Salts , Solubility , Torsemide , Torsemide/chemistry , Crystallization/methods , Salts/chemistry , Hydrogen Bonding , Diuretics/chemistry , Maleates/chemistry , Biological Availability
16.
Am J Bot ; : e16402, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243191

ABSTRACT

PREMISE: A key goal of evolutionary biologists is to understand how and why genetic variation is partitioned within species. In the yellow monkeyflower, Mimulus guttatus (syn. Erythranthe guttata), coastal perennial populations constitute a single genetically and morphologically differentiated ecotype compared to inland M. guttatus populations. While the coastal ecotype's distinctiveness has now been well documented, there is also environmental variation across the ecotype's range that could drive more continuous differentiation among its component populations. METHODS: Based on previous observations of a potential cline within this ecotype, we quantified plant height, among other traits, across coastal perennial accessions from 74 populations in a greenhouse common garden experiment. To evaluate potential drivers of the relationship between trait variation and latitude, we regressed height against multiple climatic factors, including temperature, precipitation, and coastal wind speeds. We also accounted for exposure to the open ocean in all analyses. RESULTS: Multiple traits were correlated with latitude of origin, but none more than plant height. Height was negatively correlated with latitude, and plants directly exposed to the open ocean were shorter than those protected from coastal winds. Further analyses revealed that height was correlated with climatic factors (precipitation, temperature, and wind speeds) that were autocorrelated with latitude. We hypothesize that one or more of these climatic factors drove the evolution of latitudinal clinal variation within the coastal ecotype. CONCLUSIONS: Overall, our study illustrates the complexity of how the distribution of environmental variation can simultaneously drive the evolution of both distinct ecotypes and continuous clines within those ecotypes.

17.
Eur J Med Chem ; 279: 116807, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39243453

ABSTRACT

Natural product evodiamine (Evo) and its synthetic derivatives represent an attractive dual Topo 1/2 inhibitors with broad-spectrum antitumor efficacy. However, the clinical applications of these compounds have been impeded by their poor aqueous solubility. Herein, a series of water-soluble 10-substituted-N(14)-phenylevodiamine derivatives were designed and synthesized. The most potent compound 45 featuring a quaternary ammonium salt fragment achieved robust aqueous solubility and nanomolar potency against a panel of human hepatoma cell lines Huh7, HepG2, SK-Hep-1, SMMC-7721, and SMMC-7721/DOX (doxorubicin-resistant cell). Further studies revealed that 45 could inhibit Topo 1 and Topo 2, induce apoptosis, arrest the cell cycle at the G2/M stage and inhibit the migration and invasion. Compound 45 exhibited potent antitumor activity (TGI = 51.1 %, 10 mg/kg) in the Huh7 xenograft model with acceptable safety profile. In addition, a 21-day long-term dose toxicity study confirmed that the maximum tolerated dose of compound 45 was 20 mg/kg. Overall, this study presented a promising Evo-derived candidate for the treatment of hepatocellular carcinoma.

18.
Int J Biol Macromol ; : 135366, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244129

ABSTRACT

Abscisic acid (ABA) is a pivotal regulator of plant growth, development, and responses to environmental stresses. The ABA signaling pathway involves three key components: ABA receptors known as PYLs, PP2Cs, and SnRK2s, which are conserved across higher plants. This study comprehensively investigated the PYL-PP2C-SnRK gene family in pecan, identifying 14 PYL genes, 97 PP2C genes, and 44 SnRK genes, which were categorized into subgroups through phylogenetic and sequence structure analysis. Whole-genome duplication (WGD) and dispersed duplication (DSD) were identified as major drivers of family expansion, and purifying selection was the primary evolutionary force. Tissue-specific expression analysis suggested diverse functions in different pecan tissues. qRT-PCR validation confirmed the involvement of CiPawPYLs, CiPawPP2CAs, and CiPawSnRK2s in salt stress response. Subcellular localization analysis revealed CiPawPP2C1 in the nucleus and CiPawPYL1 and CiPawSnRK2.1 in both the nucleus and the plasma membrane. In addition, VIGS indicated that CiPawSnRK2.1-silenced pecan seedling leaves display significantly reduced salt tolerance. Y2H and LCI assays verified that CiPawPP2C3 can interact with CiPawPYL5, CiPawPYL8, and CiPawSnRK2.1. This study characterizes the role of CiPawSnRK2.1 in salt stress and lays the groundwork for exploring the CiPawPYL-PP2C-SnRK module, highlighting the need to investigate the roles of other components in the pecan ABA signaling pathway.

19.
J Insect Physiol ; : 104701, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251183

ABSTRACT

In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation of diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.

20.
Plant Cell Rep ; 43(10): 230, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251423

ABSTRACT

KEY MESSAGE: OsLec-RLK overexpression enhances cell signalling and salt stress tolerance in pigeon pea, enhancing seed yield and harvest index and thus, enabling marginal lands to increase food and nutritional security. Lectin Receptor-like kinases (Lec-RLKs) are highly effective cell signaling molecules that counteract various stresses, including salt stress. We engineered pigeon pea by overexpressing OsLec-RLK gene for enhancing salt tolerance. The OsLec-RLK overexpression lines demonstrated superior performance under salt stress, from vegetative to reproductive phase, compared to wild types (WT). The overexpression lines had significantly higher K+/Na+ ratio than WT exposed to 100 mM NaCl. Under salt stress, transgenic lines showed higher levels of chlorophyll, proline, total soluble sugars, relative water content, and peroxidase and catalase activity than WT plants. Membrane injury index and lipid peroxidation were significantly reduced in transgenic lines. Analysis of phenological and yield attributes confirmed that the OsLec-RLK pigeon pea lines maintain plant vigor, with 10.34-fold increase in seed yield (per plant) and 4-5-fold increase in harvest index of overexpression lines, compared to wild type. Meanwhile, the overexpression of OsLec-RLK up-regulated the expression levels of histone deacetylase1, acyl CoA, ascorbate peroxidase, peroxidase, glutathione reductase and catalase, which were involved in the K+/Na+ homeostasis pathway. This study showed the potential of OsLec-RLK gene for increasing crop productivity and yields under salt stress and enabling the crops to be grown on marginal lands for increasing food and nutritional security.


Subject(s)
Cajanus , Chlorophyll , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Seeds , Seeds/genetics , Seeds/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Cajanus/genetics , Cajanus/physiology , Cajanus/growth & development , Salt Tolerance/genetics , Chlorophyll/metabolism , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/enzymology , Salt Stress/genetics , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL