Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Water Res ; 259: 121879, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38865915

ABSTRACT

Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.


Subject(s)
DNA, Viral , Freezing , RNA, Viral , SARS-CoV-2 , Temperature , Wastewater , Wastewater/virology , COVID-19/virology
2.
J Chromatogr A ; 1723: 464905, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38640882

ABSTRACT

Quaternary Ammonium Compounds (QACs) are widely used in household, medical and industrial settings. As a consequence, they are ubiquitously found in the environment. Although significant efforts have been put into the development of sensitive and reproducible analytical methods, much less effort has been dedicated to the monitoring of QACs upon sample storage and sample preparation. Here we studied the effect of storage, concentration, and extraction procedures on the concentrations of QACs in samples. Thirteen QACs selected amongst benzalkonium compounds (BACs), dialkyldimethylammonium compounds (DADMACs) and alkyltrimethylammonium compounds (ATMACs) were quantified in aqueous and solid samples using LC-MS/MS. Most QACs adsorbed on container walls could be recovered using a short washing step with MeOH containing 2 % v/v formic acid. Concentrations of QACs from aqueous solutions using solid phase extraction (SPE) with Strata-X cartridges and elution with acidified MeOH utilized to wash the emptied containers gave highly satisfactory recoveries (101-111 %). Good recoveries (89-116 %) were also obtained when extracting a spiked organic-rich synthetic soil using accelerated solvent extraction (ASE) with acidified MeOH at low solid/solvent ratio (0.4 g/20 mL). Applying the recommended methodologies to real samples collected from a Canadian wastewater treatment plant (WWTP) gave QAC concentrations in the ranges of 0.01-30 µg/L, < 1.2 µg/L, and 0.05-27 mg/kg for the influent, effluent and biosolids samples, respectively.


Subject(s)
Quaternary Ammonium Compounds , Solid Phase Extraction , Tandem Mass Spectrometry , Quaternary Ammonium Compounds/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Limit of Detection , Water Pollutants, Chemical/analysis , Liquid Chromatography-Mass Spectrometry
3.
Biopreserv Biobank ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38526566

ABSTRACT

Background: The population of blast cells among peripheral blood mononuclear cells (PBMCs) obtained from patients is a desirable specimen for analyzing gene expression in diseases including acute myeloid leukemia. Although the enrichment of blast cells often needs to be performed at a central laboratory, acceptable conditions for sample transport from clinical sites remain to be established. Methods: We evaluated storage temperature, duration, and tube type before initiating sample processing for the analysis of cluster of differentiation (CD)33+ myeloid cells among PBMCs as an alternative to CD34+/CD33+ blast cells. Results: CD33+ myeloid cells were successfully purified by MACS. The cell viability and the RNA integrity were sustained during storage up to 48 hours before sample processing. Storage at 4°C had minimal effects on gene expression, whereas storage at room temperature induced the senescence pathway, characterized by the expression of stress-inducible genes. A CPT tube was also better than an ethylenediaminetetraacetic acid tube for minimizing gene expression change. Conclusions: Our study provided important clues for establishing a sample handling approach for gene expression analysis with purified cell fractions from human PBMCs. To keep the variation of gene expression to a minimum, samples should be delivered at 4°C within 48 hours before processing.

4.
Microorganisms ; 12(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399814

ABSTRACT

Successful downstream molecular analyses of viral ribonucleic acid (RNA) in diagnostic laboratories, e.g., reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or next-generation sequencing, are dependent on the quality of the RNA in the specimen. In swine specimens, preserving the integrity of RNA requires proper sample handling at the time the sample is collected on the farm, during transport, and in the laboratory until RNA extraction is performed. Options for proper handling are limited to maintaining the cold chain or using commercial specimen storage matrices. Herein, we reviewed the refereed literature for evidence that commercial specimen storage matrices can play a role in preserving swine viral RNA in clinical specimens. Refereed publications were included if they compared RNA detection in matrix-treated vs. untreated samples. At present, the small number of refereed studies and the inconsistency in reported results preclude the routine use of commercial specimen storage matrices. For example, specimen storage matrices may be useful under specific circumstances, e.g., where it is mandatory to render the virus inactive. In a broader view, statistically sound side-by-side comparisons between specimens, viral RNA targets, and storage conditions are needed to establish if, when, and how commercial specimen storage matrices could be used in diagnostic medicine.

5.
Microbiol Spectr ; 12(1): e0371223, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38095462

ABSTRACT

IMPORTANCE: The composition of the human vaginal microbiome has been linked to a variety of medical conditions including yeast infection, bacterial vaginosis, and sexually transmitted infection. The vaginal microbiome is becoming increasingly acknowledged as a key factor in personal health, and it is essential to establish methods to collect and process accurate samples with self-collection techniques to allow large, population-based studies. In this study, we investigate if using AssayAssure Genelock, a nucleic acid preservative, introduces microbial biases in self-collected vaginal samples. To our knowledge, we also contribute some of the first evidence regarding the impacts of multiple swabs taken at one time point. Vaginal samples have relatively low biomass, so the ability to collect multiple swabs from a unique participant at a single time would greatly improve the replicability and data available for future studies. This will hopefully lay the groundwork to gain a more complete and accurate understanding of the vaginal microbiome.


Subject(s)
Microbiota , Vagina , Female , Humans , Vagina/microbiology , Specimen Handling/methods , RNA, Ribosomal, 16S
6.
Metabolites ; 13(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37887377

ABSTRACT

Cellular metabolomics provides insights into the metabolic processes occurring within cells and can help researchers understand how these processes are regulated and how they relate to cellular function, health, and disease. In this technical note, we investigated the effects of solvent evaporation equipment and storage condition on high-coverage cellular metabolomics. We previously introduced a robust CIL LC-MS-based cellular metabolomics workflow that encompasses various steps, including cell harvest, metabolic quenching, cell lysis, metabolite extraction, differential chemical isotope labeling, and LC-MS analysis. This workflow has consistently served as the cornerstone of our collaborative research and service projects. As a core facility catering to users with diverse research needs and financial resources, we have encountered scenarios requiring short-term sample storage. For example, the need often arises to transport samples at room temperature from user sites to our core facility. Herein, we present a study in which we compared different solvent evaporation methods (specifically, the nitrogen blowdown evaporator, SpeedVac concentrator, and lyophilizer) and diverse storage conditions (including dried samples stored in a freezer, samples stored in a freezer with methanol, dried samples stored at room temperature, and samples stored at room temperature with methanol). Our findings indicate that the choice of solvent evaporation equipment did not significantly impact the cellular metabolome. However, we observed a noteworthy change in the metabolome after 7 days of storage when cells were stored with methanol, regardless of whether they were kept at -80 °C or room temperature, in contrast to cells that were dried and frozen. Importantly, we detected no significant alterations in cells that were dried and stored at room temperature. In conclusion, to ensure the production of high-quality CIL LC-MS metabolomics results, we strongly recommend that, in situations where low-temperature storage is not feasible, cell samples should be thoroughly dried before storage or shipment at room temperature.

7.
Bull Environ Contam Toxicol ; 111(4): 55, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37847384

ABSTRACT

This work presents a new method for generating a BrCl solution, starting from the commercially available dibromodimethylhydantoin (DBDMH). This method is notable due to the straightforward, safe and clean performance, being based on a simple addition of DBDMH into aqueous HCl. The whole procedure is finished in about 20 min. An advantage of the proposed method is avoiding of tedious reagents pre-cleaning by prolonged thermal treatment, spontaneous overheating and excessive vapor evolution. The resulting BrCl stabilization reagent is low enough in mercury content to be directly used in trace mercury analysis. A thorough study of the BrCl solutions prepared by this method showed that they conform in all respects to US EPA 1631e/2002 requirements.


Subject(s)
Mercury , Water Pollutants, Chemical , Bromine , Water , Water Pollutants, Chemical/analysis , Gases , Mercury/analysis
8.
Animals (Basel) ; 13(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37835713

ABSTRACT

The equine faecal microbiota is often assessed as a proxy of the microbial community in the distal colon, where the microbiome has been linked to states of health and disease in the horse. However, the microbial community structure may change over time if samples are not adequately preserved. This study stored equine faecal samples from n = 10 horses in four preservation treatments at room temperature for up to 150 h and assessed the resulting impact on microbial diversity and the differential abundance of taxa. Treatments included "COLD" (samples packaged with a cool pack), "CLX" (2% chlorhexidine digluconate solution), "NAP" (nucleic acid preservation buffer), and "FTA" (Whatman FTA™ cards). The samples were assessed using 16S rRNA gene sequencing after storage for 0, 24, 72, and 150 h at room temperature under the different treatments. The results showed effective preservation of diversity and community structure with NAP buffer but lower diversity (p = 0.001) and the under-representation of Fibrobacterota in the FTA card samples. The NAP treatment inhibited the overgrowth of bloom taxa that occurred by 72 h at room temperature. The COLD, CLX, and NAP treatments were effective in preserving the faecal microbiota for up to 24 h at room temperature, and the CLX and NAP treatments improved the yield of Patescibacteria and Fibrobacterota in some cases. The cold and CLX treatments were ineffective in preventing community shifts that occurred by 72 h at room temperature. These findings demonstrate the suitability of the COLD, NAP, and CLX treatments for the room temperature storage of equine faeces for up to 24 h and of NAP buffer for up to 150 h prior to processing.

9.
Front Allergy ; 4: 1239924, 2023.
Article in English | MEDLINE | ID: mdl-37744695

ABSTRACT

The detection of allergen-specific IgE antibodies is an important biomarker for the diagnosis and treatment monitoring of allergic diseases. And the pre-analytical phase is an important part of the overall quality of the laboratory. In this study, 44 patients with allergic diseases (including 23 patients with allergic rhinitis, 12 patients with allergic rhinitis and asthma, and 9 patients with allergic dermatitis) were included in the outpatient center of the Department of Allergy, the First Affiliated Hospital of Guangzhou Medical University. We mixed the serums of the above 44 patients (approximately 0.8 ml of serum volume per patient) into a large volume of serum pool (about 35 ml in total) and divided into 26 parts. And 26 serum samples were stored at 4 different temperatures for 90 days to observe the stability of sIgE antibodies to 16 allergens in serum. The results show that serum sIgE antibody titers in patients with allergic diseases show significant stability during 90 days of storage, even at room temperature. Good stability even after up to 10 freeze-thaw cycles under low temperature storage conditions.

10.
Environ Res ; 236(Pt 1): 116727, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37495068

ABSTRACT

All ecosystems are exposed to a variety of anthropogenic contaminants. The potential threat posed by these contaminants to organisms has prompted scores of toxicology studies. Contaminant concentrations in wildlife toxicology studies are inconsistently expressed in wet or dry mass units, or even on a lipid-normalized basis, but tissue composition is rarely reported, and the conversion between dry and wet mass units, notably, is often based on assumed empirical moisture contents in tissues. However, diverse factors (e.g., tissue, storage conditions) may affect tissue composition and render comparisons between studies difficult or potentially biased. Here, we used data on the concentration of mercury, a global pollutant, in tissues of red foxes (Vulpes vulpes) to quantify the effects of diverse variables on moisture and lipid contents, and their consequences on contaminant concentration in different tissues, when converting between wet and dry mass units (lipid extracted or not). We found that moisture content differed largely between organs, enough to preclude the use of a single conversion factor, and decreased by 1% per year when stored at -80 °C. Although most fox tissues had low lipid concentrations, lipid content affected water content and their extraction affected the wet to dry mass conversion factor. We thus recommend reporting tissue composition (at least water and lipid contents) systematically in toxicology studies of mercury specifically and of contaminants in general, and using tissue/species specific conversion factors to convert between dry and wet mass concentration.


Subject(s)
Environmental Pollutants , Mercury , Ecosystem , Environmental Pollutants/analysis , Mercury/toxicity , Mercury/analysis , Lipids/toxicity , Water
11.
J Pers Med ; 13(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37373900

ABSTRACT

Biobanks are driving motors of precision and personalized medicine by providing high-quality biological material/data through the standardization and harmonization of their collection, preservation, and distribution. UPO Biobank was established in 2020 as an institutional, disease, and population biobank within the University of Piemonte Orientale (UPO) for the promotion and support of high-quality, multidisciplinary studies. UPO Biobank collaborates with UPO researchers, sustaining academic translational research, and supports the Novara Cohort Study, a longitudinal cohort study involving the population in the Novara area that will collect data and biological specimens that will be available for epidemiological, public health, and biological studies on aging. UPO Biobank has been developed by implementing the quality standards for the field and the ethical and legal issues and normative about privacy protection, data collection, and sharing. As a member of the "Biobanking and Biomolecular Resources Research Infrastructure" (BBMRI) network, UPO Biobank aims to expand its activity worldwide and launch cooperation with new national and international partners and researchers. The objective of this manuscript is to report an institutional and operational experience through the description of the technical and procedural solutions and ethical and scientific implications associated with the establishment of this university research biobank.

12.
Viruses ; 15(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36851649

ABSTRACT

Influenza A virus (IAV) is a single-stranded, negative-sense RNA virus and a common cause of seasonal flu in humans. Its genome comprises eight RNA segments that facilitate reassortment, resulting in a great variety of IAV strains. To study these processes, the genetic code of each segment should be unraveled. Fortunately, new third-generation sequencing approaches allow for cost-efficient sequencing of IAV segments. Sequencing success depends on various factors, including proper sample storage and processing. Hence, this work focused on the effect of storage of oral fluids and swIAV sequencing. Oral fluids (n = 13) from 2017 were stored at -22 °C and later transferred to -80 °C. Other samples (n = 21) were immediately stored at -80 °C. A reverse transcription quantitative PCR (RT-qPCR) pre- and post-storage was conducted to assess IAV viral loads. Next, samples were subjected to two IAV long-read nanopore sequencing methods to evaluate success in this complex matrix. A significant storage-associated loss of swIAV loads was observed. Still, a total of 17 complete and 6 near-complete Polish swIAV genomes were obtained. Genotype T, (H1avN2, seven herds), P (H1N1pdm09, two herds), U (H1avN1, three herds), and A (H1avN1, 1 herd) were circulated on Polish farms. In conclusion, oral fluids can be used for long-read swIAV sequencing when considering appropriate storage and segment amplification protocols, which allows us to monitor swIAV in an animal-friendly and cost-efficient manner.


Subject(s)
Influenza A virus , Nanopore Sequencing , Humans , Swine , Animals , Poland , Farms , Genetic Code , Influenza A virus/genetics
13.
mSystems ; 8(1): e0102922, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36475896

ABSTRACT

Replicability is a well-established challenge in microbiome research with a variety of contributing factors at all stages, from sample collection to code execution. Here, we focus on voided urine sample storage conditions for urogenital microbiome analysis. Using urine samples collected from 10 adult females, we investigated the microbiome preservation efficacy of AssayAssure Genelock (Genelock), compared with no preservative, under different temperature conditions. We varied temperature over 48 h in order to examine the impact of conditions samples may experience with home voided urine collection and shipping to a central biorepository. The following common lab and shipping conditions were investigated: -20°C, ambient temperature, 4°C, freeze-thaw cycle, and heat cycle. At 48 h, all samples were stored at -80°C until processing. After generating 16S rRNA gene amplicon sequencing data using the highly sensitive KatharoSeq protocol, we observed individual variation in both alpha and beta diversity metrics below interhuman differences, corroborating reports of individual microbiome variability in other specimen types. While there was no significant difference in beta diversity when comparing Genelock versus no preservative, we did observe a higher concordance with Genelock samples shipped at colder temperatures (-20°C and 4°C) when compared with the samples shipped at -20°C without preservative. Our results indicate that Genelock does not introduce a significant amount of microbial bias when used on a range of temperatures and is most effective at colder temperatures. IMPORTANCE The urogenital microbiome is an understudied yet important human microbiome niche. Research has been stimulated by the relatively recent discovery that urine is not sterile; urinary tract microbes have been linked to health problems, including urinary infections, incontinence, and cancer. The quality of life and economic impact of UTIs and urgency incontinence alone are enormous, with $3.5 billion and $82.6 billion, respectively, spent in the United States. annually. Given the low biomass of urine, novelty of the field, and limited reproducibility evidence, it is critical to study urine sample storage conditions to optimize scientific rigor. Efficient and reliable preservation methods inform methods for home self-sample collection and shipping, increasing the potential use in larger-scale studies. Here, we examined both buffer and temperature variation effects on 16S rRNA gene amplicon sequencing results from urogenital samples, providing data on the consequences of common storage methods on urogenital microbiome results.


Subject(s)
Microbiota , Urinary Incontinence , Urinary Tract Infections , Adult , Female , Humans , United States , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Quality of Life , Microbiota/genetics , Urine Specimen Collection
14.
Antibiotics (Basel) ; 11(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421288

ABSTRACT

Many studies on phenotypic antimicrobial resistance (AMR) of bacteria from healthy populations are conducted on freeze-stored samples. However, the impact of this practice on phenotypic AMR is not known. We investigated the prevalence of phenotypic AMR in Escherichia coli from chicken (n = 10) and human (n = 11) faecal samples collected from healthy subjects, subject to freeze storage (-20 °C and -80 °C) for 1, 2, 3, and 6 months. We compared counts of E. coli and prevalence of phenotypic resistance against five antimicrobials commonly used in chicken farming (ciprofloxacin, enrofloxacin, doxycycline, gentamicin, and florfenicol) with samples processed within 24 h of collection. Prevalence of phenotypic AMR was estimated by performing differential counts on agar media with and without antimicrobials. At -20 °C, there was a considerable reduction in E. coli counts over time, and this reduction was greater for human samples (-0.630 log10 units per 100 days) compared with chicken samples (-0.178 log10 units per 100 days). For most antimicrobials, AMR prevalence estimates decreased in freeze-stored samples both in humans and chickens over time. Based on these results, we conclude that results on the prevalence of phenotypic AMR on samples from freeze-stored samples are unreliable, and only fresh samples should be used in such studies.

15.
mSphere ; 7(6): e0033122, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36409104

ABSTRACT

Nasopharyngeal swabs are considered the gold-standard sample type for the detection of Streptococcus pneumoniae carriage, but recent studies have demonstrated the utility of saliva in improving the detection of carriage in adults. Saliva is generally collected in its raw, unsupplemented state, unlike nasopharyngeal swabs, which are collected into stabilizing transport media. Few data exist regarding the stability of pneumococci in unsupplemented saliva during transport and laboratory storage. We therefore evaluated the effect of storage conditions on the detection of pneumococci in saliva samples using strains representing eight pneumococcal serotypes. The bacteria were spiked into raw saliva from asymptomatic individuals, and we assessed sample viability after storage at 4°C, room temperature, and 30°C for up to 72 h; at 40°C for 24 h; and following three freeze-thaw cycles. We observed little decrease in pneumococcal detection following culture enrichment and quantitative PCR (qPCR) detection of the piaB and lytA genes compared to testing fresh samples, indicating the prolonged viability of pneumococci in neat saliva samples. This sample stability makes saliva a viable sample type for pneumococcal carriage studies conducted in remote or low-resource settings and provides insight into the effect of the storage of saliva samples in the laboratory. IMPORTANCE For pneumococcal carriage studies, saliva is a sample type that can overcome some of the issues typically seen with nasopharyngeal and oropharyngeal swabs. Understanding the limitations of saliva as a sample type is important for maximizing its use. This study sought to better understand how different storage conditions and freeze-thaw cycles affect pneumococcal survival over time. These findings support the use of saliva as an alternative sample type for pneumococcal carriage studies, particularly in remote or low-resource settings with reduced access to health care facilities.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Pneumococcal Infections/microbiology , Saliva/microbiology , Carrier State/microbiology , Nasopharynx/microbiology
16.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887064

ABSTRACT

EVs can be isolated from a conditioned medium derived from mesenchymal stromal cells (MSCs), yet the effect of the pre-processing storage condition of the cell culture-conditioned medium prior to EV isolation is not well-understood. Since MSCs are already in clinical trials, the GMP-grade of the medium which is derived from their manufacturing might have the utility for preclinical testing, and perhaps, for clinical translation, so the impact of pre-processing storage condition on EV isolation is a barrier for utilization of this MSC manufacturing by-product. To address this problem, the effects of the pre-processing storage conditions on EV isolation, characterization, and function were assessed using a conditioned medium (CM) derived from human umbilical cord-derived MSCs (HUC-MSCs). Hypothesis: The comparison of three different pre-processing storage conditions of CM immediately processed for EV isolation would reveal differences in EVs, and thus, suggest an optimal pre-processing storage condition. The results showed that EVs derived from a CM stored at room temperature, 4 °C, -20 °C, and -80 °C for at least one week were not grossly different from EVs isolated from the CM immediately after collection. EVs derived from an in pre-processing -80 °C storage condition had a significantly reduced polydispersity index, and significantly enhanced dot blot staining, but their zeta potential, hydrodynamic size, morphology and size in transmission electron microscopy were not significantly different from EVs derived from the CM immediately processed for isolation. There was no impact of pre-processing storage condition on the proliferation of sarcoma cell lines exposed to EVs. These data suggest that the CM produced during GMP-manufacturing of MSCs for clinical applications might be stored at -80 °C prior to EV isolation, and this may enable production scale-up, and thus, and enable preclinical and clinical testing, and EV lot qualification.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Cell Culture Techniques , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord
17.
Amino Acids ; 54(9): 1251-1260, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35829920

ABSTRACT

N-Acetyl-L-cysteine (NAC) is an endogenous cysteine metabolite. The drug is widely used in chronic obstructive pulmonary disease (COPD) and as antidote in acetaminophen (paracetamol) intoxication. Currently, the utility of NAC is investigated in rheumatoid arthritis (RA), which is generally considered associated with inflammation and oxidative stress. Besides clinical laboratory parameters, the effects of NAC are evaluated by measuring in plasma or serum nitrite, nitrate or their sum (NOx) as measures of nitric oxide (NO) synthesis. Malondialdehyde (MDA) and relatives such as 4-hydroxy-nonenal and 15(S)-8-iso-prostaglandin F2α serve as measures of oxidative stress, notably lipid peroxidation. In this work, we review recent clinico-pharmacological studies on NAC in rheumatoid arthritis. We discuss analytical, pre-analytical and clinical issues and their potential impact on the studies outcome. Major issues include analytical inaccuracy due to interfering endogenous substances and artefactual formation of MDA and relatives during storage in long-term studies. Differences in the placebo and NAC groups at baseline with respect to these biomarkers are also a serious concern. Modern applied sciences are based on data generated using commercially available instrumental physico-chemical and immunological technologies and assays. The publication process of scientific work rarely undergoes rigorous peer review of the analytical approaches used in the study in terms of accuracy/trueness. There is pressing need of considering previously reported reference concentration ranges and intervals as well as specific critical issues such as artefactual formation of particular biomarkers during sample storage. The latter especially applies to surrogate biomarkers of oxidative stress, notably MDA and relatives. Reported data on NO, MDA and clinical parameters, including C-reactive protein, interleukins and tumour necrosis factor α, are contradictory in the literature. Furthermore, reported studies do not allow any valid conclusion about utility of NAC in RA. Administration of NAC patients with rheumatoid arthritis is not recommended in current European and American guidelines.


Subject(s)
Acetylcysteine , Arthritis, Rheumatoid , Acetylcysteine/pharmacology , Arthritis, Rheumatoid/drug therapy , Biomarkers , Humans , Malondialdehyde , Nitric Oxide/metabolism , Oxidative Stress
18.
PeerJ ; 10: e13547, 2022.
Article in English | MEDLINE | ID: mdl-35694379

ABSTRACT

Background: There is growing interest in understanding gut microbiome dynamics, to increase the sustainability of livestock production systems and to better understand the dynamics that regulate antibiotic resistance genes (i.e., the resistome). High-throughput sequencing of RNA transcripts (RNA-seq) from microbial communities (metatranscriptome) allows an unprecedented opportunity to analyze the functional and taxonomical dynamics of the expressed microbiome and emerges as a highly informative approach. However, the isolation and preservation of high-quality RNA from livestock fecal samples remains highly challenging. This study aimed to determine the impact of the various sample storage and RNA extraction strategies on the recovery and integrity of microbial RNA extracted from selected livestock (chicken and pig) fecal samples. Methods: Fecal samples from pigs and chicken were collected from conventional slaughterhouses. Two different storage buffers were used at two different storage temperatures. The extraction of total RNA was done using four different commercially available kits and RNA integrity/quality and concentration were measured using a Bioanalyzer 2100 system with RNA 6000 Nano kit (Agilent, Santa Clara, CA, USA). In addition, RT-qPCR was used to assess bacterial RNA quality and the level of host RNA contamination. Results: The quantity and quality of RNA differed by sample type (i.e., either pig or chicken) and most significantly by the extraction kit, with differences in the extraction method resulting in the least variability in pig feces samples and the most variability in chicken feces. Considering a tradeoff between the RNA yield and the RNA integrity and at the same time minimizing the amount of host RNA in the sample, a combination of storing the fecal samples in RNALater at either 4 °C (for 24 h) or -80 °C (up to 2 weeks) with extraction with PM kit (RNEasy Power Microbiome Kit) had the best performance for both chicken and pig samples. Conclusion: Our findings provided a further emphasis on using a consistent methodology for sample storage, duration as well as a compatible RNA extraction approach. This is crucial as the impact of these technical steps can be potentially large compared with the real biological variability to be explained in microbiome and resistome studies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Swine , Animals , Livestock/genetics , RNA/genetics , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Feces/microbiology
19.
Diagnostics (Basel) ; 12(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35626342

ABSTRACT

The COVID-19 pandemic has elicited the need to analyse and store large amounts of infectious samples for laboratory diagnostics. Therefore, there has been a demand for sample storage buffers that effectively inactivate infectious viral particles while simultaneously preserving the viral RNA. Here, we present a storage buffer containing guanidine-hydrochloride that fulfils both requirements. Its ability to preserve RNA stability was confirmed by RT-qPCR, and virus-inactivating properties were tested by tissue culture infectious dose assay. Our data revealed that RNA from samples diluted in this storage buffer was efficiently preserved. Spiking samples with RNase A resulted in RNAse concentrations up to 100 ng/mL being efficiently inhibited, whereas spiking samples with infectious SARS-CoV-2 particles demonstrated rapid virus inactivation. In addition, our buffer demonstrated good compatibility with several commercially available RNA extraction platforms. The presented guanidine-hydrochloride-based storage buffer efficiently inactivates infectious SARS-CoV-2 particles and supports viral RNA stability, leading to a reduced infection risk during sample analysis and an increased period for follow-up analysis, such as sequencing for virus variants. Because the presented buffer is uncomplicated to manufacture and compatible with a variety of commercially available test systems, its application can support and improve SARS-CoV-2 laboratory diagnostics worldwide.

20.
J Fish Dis ; 45(5): 623-630, 2022 May.
Article in English | MEDLINE | ID: mdl-35176179

ABSTRACT

The protozoan Cryptocaryon irritans is one of the most important ectoparasites of marine fish, causing 'white spot disease' and mass mortality in aquaculture. To accurately predict disease outbreaks and develop prevention strategies, improved detection methods are required that are sensitive, convenient and rapid. In this study, a pair of specific primers based on the C. irritans 18S rRNA gene was developed and used in a real-time PCR (qPCR) assay. This assay was able to detect five theronts in 1 L of natural seawater. Furthermore, a linear model was established to analyse the log of Ct value and parasite abundance in seawater (y = -2.9623x + 24.2930), and the coefficient of determination (R2 ) value was 0.979. A lysis buffer was optimized for theront DNA extraction and used for storage sample. This method was superior to the commercial water DNA kit, and there was no significant degradation of DNA at room temperature for 24-96 hr. A dilution method was developed to manage qPCR inhibitors and used to investigate natural seawater samples in a net cage farm with diseased fish, and the findings were consistent with the actual situation. This study provides a valuable tool for assisting in the early monitoring and control of cryptocaryoniasis in aquaculture.


Subject(s)
Ciliophora Infections , Ciliophora , Fish Diseases , Parasites , Perciformes , Animals , Ciliophora Infections/diagnosis , Ciliophora Infections/parasitology , Ciliophora Infections/veterinary , Fish Diseases/parasitology , Perciformes/parasitology , Seawater , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL