Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.795
Filter
1.
Cureus ; 16(6): e61574, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962642

ABSTRACT

Cryotherapy in vital pulp treatment is a procedure that involves the use of extreme cold temperatures to manage inflammation and promote healing in the dental pulp tissue. It has shown potential in preserving pulp vitality and reducing post-operative discomfort in procedures such as partial and full pulpotomy. Vital pulp therapy (VPT) aims to preserve the vitality and function of the dental pulp. With the proper diagnosis, technique, and materials, it can effectively treat moderately inflamed pulp and minimize the need for more invasive procedures. This article presents a case of vital pulp cryotherapy in a patient having moderately inflamed pulp.

2.
Int J Biol Macromol ; 275(Pt 1): 133502, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960259

ABSTRACT

Bone defects resulting from trauma, illness or congenital abnormalities represent a significant challenge to global health. Conventional treatments such as autographs and allografts have limitations, leading to the exploration of bone tissue engineering (BTE) as an alternative approach. This review aims to provide a comprehensive analysis of bone regeneration mechanisms with a focus on the role of chitosan-based biomaterials and mesenchymal stem cells (MSCs) in BTE. In addition, the physiochemical and biological properties of chitosan, its potential for bone regeneration when combined with other materials and the mechanisms through which MSCs facilitate bone regeneration were investigated. In addition, different methods of scaffold development and the incorporation of MSCs into chitosan-based scaffolds were examined. Chitosan has remarkable biocompatibility, biodegradability and osteoconductivity, making it an attractive choice for BTE. Interactions between transcription factors such as Runx2 and Osterix and signaling pathways such as the BMP and Wnt pathways regulate the differentiation of MSCs and bone regeneration. Various forms of scaffolding, including porous and fibrous injections, have shown promise in BTE. The synergistic combination of chitosan and MSCs in BTE has significant potential for addressing bone defects and promoting bone regeneration, highlighting the promising future of clinical challenges posed by bone defects.

3.
Adv Sci (Weinh) ; : e2401589, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018263

ABSTRACT

Using bone regeneration scaffolds to repair craniomaxillofacial bone defects is a promising strategy. However, most bone regeneration scaffolds still exist some issues such as a lack of barrier structure, inability to precisely match bone defects, and necessity to incorporate biological components to enhance efficacy. Herein, inspired by a periosteum-bone complex, a class of multifunctional hierarchical porous poly(lactic-co-glycolic acid)/baicalein scaffolds is facilely prepared by the union of personalized negative mold technique and phase separation strategy and demonstrated to precisely fit intricate bone defect cavity. The dense up-surface of the scaffold can prevent soft tissue cell penetration, while the loose bottom-surface can promote protein adsorption, cell adhesion, and cell infiltration. The interior macropores of the scaffold and the loaded baicalein can synergistically promote cell differentiation, angiogenesis, and osteogenesis. These findings can open an appealing avenue for the development of personalized multifunctional hierarchical materials for bone repair.

4.
J Mech Behav Biomed Mater ; 157: 106661, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018918

ABSTRACT

Addressing infected bone defects remains a significant challenge in orthopedics, requiring effective infection control and bone defect repair. A promising therapeutic approach involves the development of dual-functional engineered biomaterials with drug delivery systems that combine antibacterial properties with osteogenesis promotion. The Hydroxyapatite composite scaffolds offer a one-stage treatment, eliminating the need for multiple surgeries and thereby streamlining the process and reducing treatment time. This review delves into the impaired bone repair mechanisms within pathogen-infected and inflamed microenvironments, providing a theoretical foundation for treating infectious bone defects. Additionally, it explores composite scaffolds made of antibacterial and osteogenic materials, along with advanced drug delivery systems that possess both antibacterial and bone-regenerative properties. By offering a comprehensive understanding of the microenvironment of infectious bone defects and innovative design strategies for dual-function scaffolds, this review presents significant advancements in treatment methods for infectious bone defects. Continued research and clinical validation are essential to refine these innovations, ensuring biocompatibility and safety, achieving controlled release and stability, and developing scalable manufacturing processes for widespread clinical application.

5.
Talanta ; 279: 126559, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018950

ABSTRACT

Accurately monitoring H2O2 concentrations in 3D cell clusters is challenging due to limited diffusion and rapid degradation of H2O2 in the culture medium. Despite the incorporation of three-dimensional cell culture approaches, the detection technology has largely remained as a 2D planar system. In this study, we present a versatile approach of 3D electrochemical sensing utilizing carbon nanotubes as conductive scaffolds for in-situ monitoring of H2O2 in cell clusters. These scaffolds enabled direct contact between H2O2 released from cells and the electrodes, thereby improving sensitivity and ensuring biocompatibility for cell aggregates. The scaffolds exhibited electrocatalytic behavior with a limit of detection of 6.7 nM H2O2. Additionally, the electrochemical responses of cell clusters with the scaffolds exhibited significantly higher current compared to clusters without scaffolds when stimulated with model drugs. This study underscores the potential of conductive scaffolds for real-time monitoring of H2O2 released from cell clusters in 3D microenvironments.

6.
Tissue Eng Regen Med ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017827

ABSTRACT

BACKGROUND: Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years. METHODS: This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea. RESULTS AND CONCLUSION: The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.

7.
Acta Biomater ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969078

ABSTRACT

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (ß-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.

8.
ACS Appl Bio Mater ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996006

ABSTRACT

3D printing can revolutionize personalized medicine by allowing cost-effective, customized tissue-engineering constructs. However, the limited availability and diversity of biopolymeric hydrogels restrict the variety and applications of bioinks. In this study, we introduce a composite bioink for 3D bioprinting, combining a photo-cross-linkable derivative of Mucin (Mu) called Methacrylated Mucin (MuMA) and Hyaluronic acid (HA). The less explored Mucin is responsible for the hydrogel nature of mucus and holds the potential to be used as a bioink material because of its plethora of features. HA, a crucial extracellular matrix component, is mucoadhesive and enhances ink viscosity and printability. Photo-cross-linking with 405 nm light stabilizes the printed scaffolds without damaging cells. Rheological tests reveal shear-thinning behavior, aiding cell protection during printing and improved MuMA bioink viscosity by adding HA. The printed structures exhibited porous behavior conducive to nutrient transport and cell migration. After 4 weeks in phosphate-buffered saline, the scaffolds retain 70% of their mass, highlighting stability. Biocompatibility tests with lung epithelial cells (L-132) confirm cell attachment and growth, suggesting suitability for lung tissue engineering. It is envisioned that the versatility of bioink could lead to significant advancements in lung tissue engineering and various other biomedical applications.

9.
J Med Signals Sens ; 14: 10, 2024.
Article in English | MEDLINE | ID: mdl-38993202

ABSTRACT

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.

10.
Polymers (Basel) ; 16(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000793

ABSTRACT

Cryogels represent a valid strategy as scaffolds for tissue engineering. In order to adequately support adhesion and proliferation of anchorage-dependent cells, different polymers need to be combined within the same scaffold trying to mimic the complex features of a natural extracellular matrix (ECM). For this reason, in this work, gelatin (Gel) and chondroitin sulfate (CS), both functionalized with methacrylic groups to produce CSMA and GelMA derivatives, were selected to prepare cryogel networks. Both homopolymer and heteropolymer cryogels were produced, via radical crosslinking reactions carried out at -12 °C for 2 h. All the scaffolds were characterized for their mechanical, swelling and morphological properties, before and after autoclave sterilization. Moreover, they were evaluated for their biocompatibility and ability to support the adhesion of human gingival fibroblasts and tenocytes. GelMA-based homopolymer networks better withstood the autoclave sterilization process, compared to CSMA cryogels. Indeed, GelMA cryogels showed a decrease in stiffness of approximately 30%, whereas CSMA cryogels of approximately 80%. When GelMA and CSMA were blended in the same network, an intermediate outcome was observed. However, the hybrid scaffolds showed a general worsening of the biological performance. Indeed, despite their ability to withstand autoclave sterilization with limited modification of the mechanical and morphological properties, the hybrid cryogels exhibited poor cell adhesion and high LDH leakage. Therefore, not only do network components need to be properly selected, but also their combination and ability to withstand effective sterilization process should be carefully evaluated for the development of efficient scaffolds designed for tissue engineering purposes.

11.
Adv Sci (Weinh) ; : e2404433, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005186

ABSTRACT

Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.

12.
Int J Biol Macromol ; : 133830, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002914

ABSTRACT

As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.

13.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998708

ABSTRACT

In the current study, the synthesis of hydroxyapatite-ceria (HAP-CeO2) scaffolds is attempted through a bioinspired chemical approach. The utilized colloidal CeO2 suspension presents antifungal activity against the Aspergillus flavus and Aspergillus fumigatus species at concentrations higher than 86.1 ppm. Three different series of the composite HAP-CeO2 suspensions are produced, which are differentiated based on the precursor suspension to which the CeO2 suspension is added and by whether this addition takes place before or after the formation of the hydroxyapatite phase. Each of the series consists of three suspensions, in which the pure ceria weight reaches 4, 5, and 10% (by mass) of the produced hydroxyapatite, respectively. The characterization showed that the 2S series's specimens present the greater alteration towards their viscoelastic properties. Furthermore, the 2S series's sample with 4% CeO2 presents the best mechanical response. This is due to the growth of needle-like HAP crystals during lyophilization, which-when oriented perpendicular to the direction of stress application-enhance the resistance of the sample to deformation. The 2S series's scaffolds had an average pore size equal to 100 µm and minimum open porosity 89.5% while simultaneously presented the lowest dissolution rate in phosphate buffered saline.

14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999953

ABSTRACT

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Subject(s)
Ceramics , Nanoparticles , Polyesters , Polymethyl Methacrylate , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Polyesters/chemistry , Polymethyl Methacrylate/chemistry , Tissue Scaffolds/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Nanoparticles/chemistry , Animals , Mice , Bone and Bones/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Cell Line
15.
Adv Biol (Weinh) ; : e2400184, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971965

ABSTRACT

Triple-negative breast cancer (TNBC) is the most invasive type of breast cancer with high risk of brain metastasis. To better understand interactions between breast tumors with the brain extracellular matrix (ECM), a 3D cell culture model is implemented using a thiolated hyaluronic acid (HA-SH) based hydrogel. The latter is used as HA represents a major component of brain ECM. Melt-electrowritten (MEW) scaffolds of box- and triangular-shaped polycaprolactone (PCL) micro-fibers for hydrogel reinforcement are utilized. Two different molecular weight HA-SH materials (230 and 420 kDa) are used with elastic moduli of 148 ± 34 Pa (soft) and 1274 ± 440 Pa (stiff). Both hydrogels demonstrate similar porosities. The different molecular weight of HA-SH, however, significantly changes mechanical properties, e.g., stiffness, nonlinearity, and hysteresis. The breast tumor cell line MDA-MB-231 forms mainly multicellular aggregates in both HA-SH hydrogels but sustains high viability (75%). Supplementation of HA-SH hydrogels with ECM components does not affect gene expression but improves cell viability and impacts cellular distribution and morphology. The presence of other brain cell types further support numerous cell-cell interactions with tumor cells. In summary, the present 3D cell culture model represents a novel tool establishing a disease cell culture model in a systematic way.

16.
Article in English | MEDLINE | ID: mdl-39044386

ABSTRACT

The treatment of critical-sized bone defects caused by tumor removal, skeletal injuries, or infections continues to pose a major clinical challenge. A popular potential alternative solution to autologous bone grafts is a tissue-engineered approach that utilizes the combination of mesenchymal stromal/stem cells (MSCs) with synthetic biomaterial scaffolds. This approach aims to support new bone formation by mimicking many of the biochemical and biophysical cues present within native bone. Regrettably, osteocyte cells, crucial for bone maturation and homeostasis, are rarely produced within MSC-seeded scaffolds, thereby restricting the development of fully mature cortical bone from these synthetic implants. In this work, we have constructed a multimodal scaffold by combining electrospun poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds with poly(ethylene glycol) (PEG)-based hydrogels that mimic the functional unit of cortical bone, osteon (osteon-mimetic) scaffolds. These scaffolds were decorated with a novel bone morphogenic protein-6 (BMP6) peptide (BMP6p) after our findings revealed that the BMP6p drives higher levels of Smad signaling than the full-length protein counterpart, soluble or when bound to the PEG hydrogel backbone. We show that our osteon-mimetic scaffolds, in presenting concentric layers of BMP6p-PEG hydrogel overlaid on MSC-seeded PLGA nanofibers, promoted the rapid formation of osteocyte-like cells with a phenotypic dendritic morphology, producing early osteocyte markers, including E11/gp38 (E11). Maturation of these osteocyte-like cells was further confirmed by the observation of significant dentin matrix protein 1 (DMP1) throughout our bilayered scaffolds after 3 weeks, even when cultured in a medium without dexamethasone (DEX) or any other osteogenic supplements. These results demonstrate that these osteon-mimetic scaffolds, in presenting biochemical and topographical cues reminiscent of the forming osteon, can drive the formation of osteocyte-like cells in vitro from hBMSCs without the need for any osteogenic factor media supplementation.

17.
ACS Biomater Sci Eng ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041681

ABSTRACT

The demand for macroporous hydrogel scaffolds with interconnected porous and open-pore structures is crucial for advancing research and development in cell culture and tissue regeneration. Existing techniques for creating 3D porous materials and controlling their porosity are currently constrained. This study introduces a novel approach for producing highly interconnected aspartic acid-gelatin macroporous hydrogels (MHs) with precisely defined open pore structures using a one-step emulsification polymerization method with surface-modified silica nanoparticles as Pickering stabilizers. Macroporous hydrogels offer adjustable pore size and pore throat size within the ranges of 50 to 130 µm and 15 to 27 µm, respectively, achieved through variations in oil-in-water ratio and solid content. The pore wall thickness of the macroporous hydrogel can be as thin as 3.37 µm and as thick as 6.7 µm. In addition, the storage modulus of the macroporous hydrogels can be as high as 7250 Pa, and it maintains an intact rate of more than 92% after being soaked in PBS for 60 days, which is also good performance for use as a biomedical scaffold material. These hydrogels supported the proliferation of human dental pulp stem cells (hDPSCs) over a 30 day incubation period, stretching the cell morphology and demonstrating excellent biocompatibility and cell adhesion. The combination of these desirable attributes makes them highly promising for applications in stem cell culture and tissue regeneration, underscoring their potential significance in advancing these fields.

18.
Proc Inst Mech Eng H ; : 9544119241259071, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045911

ABSTRACT

When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach doesn't seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. 3D bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for 3D bioprinting, three different materials were combined such as silk fibroin, bone particles, and synthetic biopolymer poly (ε-caprolactone) (PCL). These biomaterials were used to fabricate the two composites scaffolds such as: silk fibroin + bovine bone (SFB) and silk fibroin + bovine bone + Polycaprolactone (SFBP). The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the two composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds' capacity to generate hydroxyapatite in vitro. The combined findings show that the two 3D printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.

19.
J Food Sci ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042463

ABSTRACT

Decellularized plant scaffolds have been used to develop edible scaffolds for cell cultured meat because of their natural structures similar to that of mammalian tissues. However, their diverse three-dimensional (3D) porous structures may lead to differences in myogenic differentiation of skeletal muscle cells. In this study, parsley plant tissues were decellularized and modified by type A gelatin and transglutaminase while retaining, respectively, longitudinal fibrous and transverse honeycomb pore structures. The effects of the structure of the decellularized parsley scaffold on the proliferation and myogenic differentiation of C2C12 cells were investigated and the quality of cell cultured meat was evaluated. The results showed that fibrous pore structure guided cells to be arranged in parallel, whereas honeycomb pore structure connected cells in a circular pattern. After induced differentiation, the fibrous scaffolds were more inclined to form multinucleated myotubes with higher expression of myogenic genes and proteins, and the final cell-based meat contained higher total protein content. Decellularized plant scaffolds with fibrous pore structure were more suitable for myogenic differentiation of C2C12 cells, providing support to the development of edible scaffolds for cultured meat. PRACTICAL APPLICATION: This study investigated the different three-dimensional (3D) pore structure of parsley parenchyma to gain insight into how the 3D pore structure of decellularized plant scaffolds regulates myogenic differentiation, which is expected to address the unstable myogenic differentiation of skeletal muscle cells on decellularized plant scaffolds in cell culture meat production.

20.
Article in English | MEDLINE | ID: mdl-39034338

ABSTRACT

The objective of the study is to investigate the safety, feasibility, and degradation profile of a novel Mg alloy-based bioresorbable coronary scaffold (JFK-PRODUCT BRS) with thin struts (110 µm). Polymer- or Mg alloy-based BRSs have not replaced nondegradable metal stents because of the higher prevalence of scaffold thrombosis and restenosis in clinical practice; these poor clinical outcomes were due to inadequate scaffold designs, including thick struts (more than 150 µm) and their inappropriate degradation processes. Fourteen healthy pigs received 17 JFK-PRODUCT BRSs in the coronary arteries and were sacrificed at 1, 6, 12, 18, and 26 months after implantation. Angiography, optical coherence tomography, microfocus X-ray computed tomography (µCT), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDX), and histopathological evaluation were performed. The JFK-PRODUCT had a median percent late recoil of 11.28% at 1 month. The µCT observation confirmed that scaffold discontinuity reached 64.8% at 12 months with increased scaffold inner area thereafter, suggesting artery positive remodeling. The inflammation was mild, peaked at 18 months, and decreased thereafter. The SEM-EDX analysis demonstrated gradual degradation of the scaffold with formation of inorganic deposits, presumed to be calcium phosphates. It also revealed the disappearance of calcium phosphates at 26 months, achieving almost complete replacement of the scaffold by biocomponents. The current study demonstrated the safety and feasibility of JFK-PRODUCT with a lower acute recoil rate despite its thin struts. The scaffolds were almost completely disappeared at 26 months after implantation.

SELECTION OF CITATIONS
SEARCH DETAIL