Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pol J Microbiol ; 66(3): 335-343, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-29319532

ABSTRACT

Arabitol is a polyalcohol which has about 70% of the sweetness of sucrose and an energy density of 0.2 kcal/g. Similarly to xylitol, it can be used in the food and pharmaceutical industries as a natural sweetener, a texturing agent, a dental caries reducer, and a humectant. Biotechnological production of arabitol from sugars represents an interesting alternative to chemical production. The yeast Scheffersomyces shehatae strain 20BM-3 isolated from rotten wood was screened for its ability to produce arabitol from L-arabinose, glucose, and xylose. This isolate, cultured at 28°C and 150 rpm, secreted 4.03 ± 0.00 to 7.97 ± 0.67 g/l of arabitol from 17-30 g/l of L-arabinose assimilated from a medium containing 20-80 g/l of this pentose with yields of 0.24 ± 0.00 to 0.36 ± 0.02 g/g. An optimization study demonstrated that pH 4.0, 32°C, and a shaking frequency of 150 rpm were the optimum conditions for arabitol production by the investigated strain. Under these conditions, strain 20BM-3 produced 6.2 ± 0.17 g/l of arabitol from 17.5 g/l of arabinose after 4 days with a yield of 0.35 ± 0.01 g/g. This strain also produced arabitol from glucose, giving much lower yields, but did not produce it from xylose. The new strain can be successfully used for arabitol production from abundantly available sugars found in plant biomass.


Subject(s)
Arabinose/metabolism , Candida/metabolism , Glucose/metabolism , Sugar Alcohols/metabolism , Xylose/metabolism , Biotransformation/physiology , Candida/classification , Candida/isolation & purification , Wood/microbiology
2.
Springerplus ; 5(1): 1040, 2016.
Article in English | MEDLINE | ID: mdl-27462488

ABSTRACT

Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates.

3.
3 Biotech ; 3(5): 345-352, 2013 Oct.
Article in English | MEDLINE | ID: mdl-28324336

ABSTRACT

Bioconversion of hemicellulosic hydrolysates into ethanol with the desired yields plays a pivotal role for the overall success of biorefineries. This paper aims to evaluate the ethanol production potential of four native strains of Scheffersomyces shehatae (syn. Candida shehatae) viz. S. shehatae BR6-2AI, CG8-8BY, PT1-1BASP and BR6-2AY, isolated from Brazilian forests. These strains were grown in commercial D-xylose-supplemented synthetic medium and sugarcane bagasse hemicellulose hydrolysate. S. shehatae BR6-2AY showed maximum ethanol production [0.48 ± 0.019 g g-1, 95 ± 3.78 % fermentation efficiency (FE)] followed by S. shehatae CG8-8BY (0.47 ± 0.016 g g-1, 93 ± 3.12 % FE), S. shehatae BR6-2AI (0.45 ± 0.01 g g-1, 89 ± 1.71 % FE) and S. shehatae PT1-1BASP (0.44 ± 0.02 g g-1, 86 ± 3.37 % FE) when grown in synthetic medium. During the fermentation of hemicellulose hydrolysates, S. shehatae CG8-8BY and S. shehatae BR6-2AY showed ethanol production (0.30 ± 0.05 g g-1, 58 ± 0.02 % FE) and (0.21 ± 0.01 g g-1, 40 ± 1.93 % FE), respectively.

SELECTION OF CITATIONS
SEARCH DETAIL