Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Microbiome ; 18(1): 58, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438848

ABSTRACT

BACKGROUND: In New-Caledonia, at the end of each shrimp production cycle, earthen ponds are drained and dried to enhance microbial decomposition of nutrient-rich waste trapped in the sediment during the rearing. However, excessive ponds drying may not be suitable for the decomposition activities of microorganisms. Halophytes, salt tolerant plants, naturally grow at vicinity of shrimp ponds; due to their specificity, we explored whether halophytes cultivation during the pond drying period may be suitable for pond bioremediation. In addition, plants are closely associated with microorganisms, which may play a significant role in organic matter decomposition and therefore in bioremediation. Thus, in this study we aimed to determine the impact of 3 halophyte species (Suaeda australis, Sarcocornia quinqueflora and Atriplex jubata) on active sediment microbial communities and their implications on organic matter degradation. RESULTS: Drying significantly decreased the microbial diversity index compared to those of wet sediment or sediment with halophytes. Microbial profiles varied significantly over time and according to the experimental conditions (wet, dry sediment or sediment with halophyte species). Halophytes species seemed to promote putative microbial metabolism activities in the sediment. Taxa related to nitrogen removal, carbon mineralisation, sulphur reduction and sulphide oxidation were significant biomarkers in sediment harbouring halophytes and may be relevant for bioremediation. Whereas microbial communities of dry sediment were marked by soil limited-moisture taxa with no identification of microbial metabolic functions. Nitrogen reduction in sediments was evidenced in wet sediment and in sediments with halophytes cultures, along with putative microbial denitrification activities. The greatest nitrogen reduction was observed in halophytes culture. CONCLUSION: The efficiency of sediment bioremediation by halophytes appears to be the result of both rhizosphere microbial communities and plant nutrition. Their cultures during the pond drying period may be used as aquaculture diversification by being a sustainable system.

2.
Microbiol Spectr ; 11(3): e0520022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37102964

ABSTRACT

The lacustrine systems of La Brava and La Punta, located in the Tilopozo sector in the extreme south of Salar de Atacama, are pristine high-altitude Andean lakes found along the central Andes of South America. This shallow ecosystem suffers from permanent evaporation, leading to falling water levels, causing it to recede or disappear during the dry season. This dynamic causes physicochemical changes in lakes, such as low nutrient availability, pH change, and dissolved metals, which can influence the composition of the microbial community. In this study, we used a metataxonomic approach (16S rRNA hypervariable regions V3 to V4) to characterize the sedimentary microbiota of these lakes. To understand how the water column affects and is structured in the microbiota of these lakes, we combined the analysis of the persistence of the water column through satellite images and physicochemical characterization. Our results show a significant difference in abiotic factors and microbiota composition between La Punta and La Brava lakes. In addition, microbiota analysis revealed compositional changes in the ecological disaggregation (main and isolated bodies) and antagonistic changes in the abundance of certain taxa between lakes. These findings are an invaluable resource for understanding the microbiological diversity of high Andean lakes using a multidisciplinary approach that evaluates the microbiota behavior in response to abiotic factors. IMPORTANCE In this study, we analyzed the persistence of the water column through satellite images and physicochemical characterization to investigate the composition and diversity in High Andean Lake Systems in a hyperarid environment. In addition to the persistence of the water column, this approach can be used to analyze changes in the morphology of saline accumulations and persistence of snow or ice; for example, for establishing variable plant cover over time and evaluating the microbiota associated with soils with seasonal changes in plants. This makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. In our case, it was used to study microorganisms capable of resisting desiccation and water restriction for a considerable period and adapting to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration.


Subject(s)
Lakes , Microbiota , Lakes/chemistry , Seasons , Water , RNA, Ribosomal, 16S/genetics , Altitude
3.
Environ Sci Pollut Res Int ; 30(19): 54961-54978, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36881227

ABSTRACT

We investigated the effects of metals and physicochemical variables on the microbes and their metabolisms in the sediments of Guarapiranga reservoir, a tropical eutrophic-hypereutrophic freshwater reservoir located in a highly urbanized and industrialized area in Brazil. The metals cadmium, copper, and chromium showed minor contribution to changes in the structure, composition, and richness of sediment microbial communities and functions. However, the effects of metals on the microbiota are increased when taken together with physicochemical properties, including the sediment carbon and sulfur, the bottom water electrical conductivity, and the depth of the water column. Clearly, diverse anthropic activities, such as sewage discharge, copper sulfate application to control algal growth, water transfer, urbanization, and industrialization, contribute to increase these parameters and the metals spatially in the reservoir. Microbes found especially in metal-contaminated sites encompassed Bathyarchaeia, MBG-D and DHVEG-1, Halosiccatus, Candidatus Methanoperedens, Anaeromyxobacter, Sva0485, Thermodesulfovibrionia, Acidobacteria, and SJA-15, possibly showing metal resistance or acting in metal bioremediation. Knallgas bacteria, nitrate ammonification, sulfate respiration, and methanotrophy were inferred to occur in metal-contaminated sites and may also contribute to metal removal. This knowledge about the sediment microbiota and metabolisms in a freshwater reservoir impacted by anthropic activities allows new insights about their potential for metal bioremediation in these environments.


Subject(s)
Metals, Heavy , Microbiota , Water Pollutants, Chemical , Brazil , Metals/analysis , Copper , Bacteria , Water , Geologic Sediments/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis
4.
Environ Pollut ; 325: 121453, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934965

ABSTRACT

Antibiotics and heavy metals can have a negative impact on the nitrogen (N) cycle and microbial metabolism in coastal aquaculture environment. An indoor simulated culture experiment was conducted to explore how sulfadiazine and lead influence the N cycling in aquatic environment. Specifically, the experiment involved adding sulfadiazine (SDZ), lead (Pb), a combination of SDZ and Pb (SP), and a control group (CK). The fluxes and contents of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) in sediment-water interface and sediments, the abundance of N cycle function genes (amoA_AOB, hzsA, nar, nirK, nirS, norB and nosZ) and microbiota in sediments were analyzed. The results showed that the presence of SDZ and Pb inhibited the nitrification function gene and nitrifiers abundance in surface sediment, and thus leading to more accumulation of NH4+ and NO2- in overlying water. Pb exposure increased the abundances of denitrifying bacteria stimulated the first three steps of denitrification in the sediment, resulting in more removal of NO3- from the sediment, but possibly had the risk of releasing more greenhouse gas N2O. Conversely, the presence of SDZ ultimately inhibited denitrification and anammox bacterial activities in the sediment. This study revealed how heavy metal and antibiotic impair the microbial communities and N cycling function gene expression, leading to the deterioration of typical coastal aquaculture environments.


Subject(s)
Denitrification , Metals, Heavy , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/metabolism , Water/metabolism , Nitrogen Dioxide/metabolism , Lead/metabolism , Nitrogen Cycle , Bacteria/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Nitrogen/metabolism , Sulfadiazine/metabolism
5.
J Hazard Mater ; 443(Pt B): 130261, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36356515

ABSTRACT

Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.


Subject(s)
Anti-Bacterial Agents , Ponds , Animals , Humans , Anti-Bacterial Agents/pharmacology , Astacoidea/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics , Ecosystem , Enrofloxacin/pharmacology , Genes, Bacterial , Ponds/analysis , Geologic Sediments
6.
Front Microbiol ; 13: 1076610, 2022.
Article in English | MEDLINE | ID: mdl-36687630

ABSTRACT

Wetlands are natural sources of methane (CH4) emissions, providing the largest contribution to the atmospheric CH4 pool. Changes in the ecohydrological environment of coastal salt marshes, especially the surface inundation level, cause instability in the CH4 emission levels of coastal ecosystems. Although soil methane-associated microorganisms play key roles in both CH4 generation and metabolism, how other microorganisms regulate methane emission and their responses to inundation has not been investigated. Here, we studied the responses of prokaryotic, fungal and cercozoan communities following 5 years of inundation treatments in a wetland experimental site, and molecular ecological networks analysis (MENs) was constructed to characterize the interdomain relationship. The result showed that the degree of inundation significantly altered the CH4 emissions, and the abundance of the pmoA gene for methanotrophs shifted more significantly than the mcrA gene for methanogens, and they both showed significant positive correlations to methane flux. Additionally, we found inundation significantly altered the diversity of the prokaryotic and fungal communities, as well as the composition of key species in interactions within prokaryotic, fungal, and cercozoan communities. Mantel tests indicated that the structure of the three communities showed significant correlations to methane emissions (p < 0.05), suggesting that all three microbial communities directly or indirectly contributed to the methane emissions of this ecosystem. Correspondingly, the interdomain networks among microbial communities revealed that methane-associated prokaryotic and cercozoan OTUs were all keystone taxa. Methane-associated OTUs were more likely to interact in pairs and correlated negatively with the fungal and cercozoan communities. In addition, the modules significantly positively correlated with methane flux were affected by environmental stress (i.e., pH) and soil nutrients (i.e., total nitrogen, total phosphorus and organic matter), suggesting that these factors tend to positively regulate methane flux by regulating microbial relationships under inundation. Our findings demonstrated that the inundation altered microbial communities in coastal wetlands, and the fungal and cercozoan communities played vital roles in regulating methane emission through microbial interactions with the methane-associated community.

7.
Front Microbiol ; 12: 647921, 2021.
Article in English | MEDLINE | ID: mdl-33815337

ABSTRACT

Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.

SELECTION OF CITATIONS
SEARCH DETAIL