Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.939
Filter
1.
Comput Biol Med ; 180: 108944, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096609

ABSTRACT

BACKGROUND: A single learning algorithm can produce deep learning-based image segmentation models that vary in performance purely due to random effects during training. This study assessed the effect of these random performance fluctuations on the reliability of standard methods of comparing segmentation models. METHODS: The influence of random effects during training was assessed by running a single learning algorithm (nnU-Net) with 50 different random seeds for three multiclass 3D medical image segmentation problems, including brain tumour, hippocampus, and cardiac segmentation. Recent literature was sampled to find the most common methods for estimating and comparing the performance of deep learning segmentation models. Based on this, segmentation performance was assessed using both hold-out validation and 5-fold cross-validation and the statistical significance of performance differences was measured using the Paired t-test and the Wilcoxon signed rank test on Dice scores. RESULTS: For the different segmentation problems, the seed producing the highest mean Dice score statistically significantly outperformed between 0 % and 76 % of the remaining seeds when estimating performance using hold-out validation, and between 10 % and 38 % when estimating performance using 5-fold cross-validation. CONCLUSION: Random effects during training can cause high rates of statistically-significant performance differences between segmentation models from the same learning algorithm. Whilst statistical testing is widely used in contemporary literature, our results indicate that a statistically-significant difference in segmentation performance is a weak and unreliable indicator of a true performance difference between two learning algorithms.

2.
Sci Rep ; 14(1): 17827, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090089

ABSTRACT

Dyes are one of the common contaminants in industrial wastewater. Adsorption is the most widely method which used to treat dye-contaminated water due to their easy use, cost-effectiveness, and their efficiency was high. The aim of this study is the investigating of the utilization of the activated carbon which prepared from Raphanus seeds solid residual (ACRS) as a low cost adsorbent for removing of cationic Methylene Blue dye (MB)from wastewater. measuring the surface area using BET methods and SEM. The FT‒IR and XRD was measured. Different variables (e.g.: initial concentration of the dye, pH, contact time, and dosage) have been studied. Process has been systematically investigated experimentally at (25 ± 1 °C). The % removal of MB reached 99.4% after 90-min MB adsorption (40 mg/L) was observed within 5 min of contact time for the Raphanus seeds solid residual (ACRS) dosage of 4 g/L. MB initial concentration (10 ppm) Raphanus seeds solid residual (ACRS) effectively adsorbed MB (> 99%) over a widely range of pH (from pH 2 to pH 8). However, a swift decline in removal was observed when the pH was set at 7. The results of the adsorption kinetics analysis indicate a strong correlation with the pseudo-second-order model, as evidenced by the high regression coefficients. However, the adsorption capacity diminished with a rise in temperature. Thermodynamic calculations of (MB) onto Raphanus seeds solid residual (ACRS) is an exothermic reaction. The results have been indicated that the effectiveness of MB removal by activated carbon prepared from Raphanus seeds solid residual is favorable under neutral conditions, Raphanus seeds solid residual (ACRS) can be considered an efficient, environmentally friendly, readily available, and economical adsorbent that could treat industrial wastewater contaminated with cationic textile dyes. The objective of the experiments was to investigate the impact of various factors on the response of a process or formulation. To accomplish this goal, response surface methodology (RSM) has employed as a statistical model. RSM is an efficient and effective method for optimizing processes through the use of a quadratic polynomial model. The utilization of RSM allows for a reduction in the number of experiments needed, thus minimizing the associated costs of extensive analysis. This method has been done using Box-Behnken Design (BBD) to optimize % removal of MB. The optimal conditions as obtained from the RSM is pH 7,contact time 120 min, initial concentration 10 ppm, ACRS dosage 1 g, adsorption temperature 45 °C.

3.
Environ Toxicol Chem ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051738

ABSTRACT

Energy content, moisture content, and energy assimilation efficiency are essential parameters in the food intake rate (FIR) and exposure calculations for bird and mammal risk assessments. The updated European Food Safety Authority guidance document on risk assessment for birds and mammals summarizes these parameters for different food items. For seed treatments, values for cereal seeds are proposed as surrogates for other crops. Oil-containing seeds are expected to have a higher energy content than cereal seeds. This would result in lower FIR and, thus, exposure from consuming such seeds. To be able to calculate reliable exposure values for risk-assessment purposes, we conducted a systematic literature review to collect information on these three parameters for oil-containing seeds (sunflower, oilseed rape, soybean, peanut, sesame, safflower, linseed [flax], white mustard, and castor bean). The search yielded 401 papers, of which 151 contained values for at least one of the parameters of the crops in focus. The overall average energy content value of oil-containing seeds was 24.25 kJ/g (n = 124, SD = 3.00), whereas that for moisture content was 6.57% (n = 296, SD = 1.15). Energy assimilation values were only available for peanut, oilseed rape, soy, linseed, and sunflower for a limited number of bird and mammal species. Mean energy assimilation efficiency for mammals was 82.69% (n = 4, SD = 1.55), whereas values for birds were 57.54% (n = 2, SD = 6.77) for Galliformes and 79.25% (n = 2, SD = 1.82) for Passeriformes. The values presented can be used to calculate appropriate FIR values for future bird and mammal risk assessments. Environ Toxicol Chem 2024;00:1-6. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Food Chem ; 460(Pt 1): 140530, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39053282

ABSTRACT

An ultra-rapid, in-situ Raman microscopy strategy was developed for judging both seed freshness and seed vigor based on relative quantification of carotenoids content during sunflower seed germination. The carotenoids content was determined using the ratio of the Raman peak intensities at 1525 and 1268 cm-1 (I1525/1268). When different samples (harvest times and storage conditions) were soaked in water for 0-24 h, the carotenoids content in the embryonic axes gradually increased, with the carotenoids higher in fresher seeds. Using this method, freshly harvested sunflower seeds (2022) were successfully discriminated from seeds harvested over three previous years (2019-2021) and from seeds subjected to accelerated aging at 45 °C or 60 °C for 2-8 days, the samples were correctly differentiated >90%. In addition, a linear correlation between I1525/1268 ratio and seed germination was found (R2 > 0.95). This proposed method can serve as an ultra-rapid strategy for determination of sunflower seed quality.

5.
Food Chem ; 458: 140526, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39053392

ABSTRACT

Thermal processing can alter the biological activity of seed phytochemicals in various ways, thus improving shelf life, bioavailability, oxidative stability, and oil yield; it can also decrease the content of antinutritional compounds, reduce cytotoxic activity and increase the total phenolic content of the seeds. However, this treatment can also inactivate beneficial compounds, including phenolics. This review describes the effect of different thermal processing methods on the content, activity, and bioavailability of chemical compounds from different edible seeds. The outcome is dependent on the method, temperature, time of processing, and type of seeds. Although thermal processing has many benefits, its precise effect on different species requires further clarification to determine how it influences their phytochemical content and biological activity, and identify the optimal conditions for processing.

6.
Front Pharmacol ; 15: 1401826, 2024.
Article in English | MEDLINE | ID: mdl-39055489

ABSTRACT

Pomegranate seeds (PS) are the dried seeds derived from pomegranate fruit, accounting for approximately 20% of the fruit's total weight, and are a by-product of pomegranate juice extraction. These seeds hold significance in traditional medicine among Uyghurs and Tibetan cultures, featuring diverse clinical applications within traditional Chinese medicine. These applications include management of gastric coldness and acidity, abdominal distension, liver and gallbladder fever, and pediatric enteritis. PS demonstrates properties such as stomach tonicity, qi regulation, analgesia, and anti-inflammatory effects. Extensive research underscores the richness of PS in various phytochemical compounds and metabolites, notably unsaturated fatty acids (particularly linolenic acid and linoleic acid), phenolic compounds tocopherols, proteins, and volatile oils. Notably, among these bioactive compounds, punicic acid (PA), found within PS, demonstrates potential in the prevention and treatment of cancers, diabetes, obesity, and other ailments. Despite extensive literature on pomegranate as a botanical entity, a comprehensive review focusing specifically on the chemical composition and pharmacological effects of PS remains elusive. Therefore, this review aimed to consolidate knowledge regarding the medicinal properties of PS, summarizing its chemical composition, traditional uses, and pharmacological effects in treating various diseases, thereby laying a foundation for the advancement and application of PS in the field of pharmacology.

7.
Plant Methods ; 20(1): 110, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044226

ABSTRACT

BACKGROUND: Since traditional germination test methods have drawbacks such as slow efficiency, proneness to error, and damage to seeds, a non-destructive testing method is proposed for full-process germination of radish seeds, which improves the monitoring efficiency of seed quality. RESULTS: Based on YOLOv8n, a lightweight test model YOLOv8-R is proposed, where the number of parameters, the amount of calculation, and size of weights are significantly reduced by replacing the backbone network with PP-LCNet, the neck part with CCFM, the C2f of the neck part with OREPA, the SPPF with FocalModulation, and the Detect of the head part with LADH. The ablation test and comparative test prove the performance of the model. With adoption of germination rate, germination index, and germination potential as the three vitality indicators, the seed germination phenotype collection system and YOLOv8-R model are used to analyze the full time-series sequence effects of different ZnO NPs concentrations on germination of radish seeds under varying degrees of salt stress. CONCLUSIONS: The results show that salt stress inhibits the germination of radish seeds and that the inhibition effect is more obvious with the increased concentration of NaCl solution; in cultivation with deionized water, the germination rate of radish seeds does not change significantly with increased concentration of ZnO NPs, but the germination index and germination potential increase initially and then decline; in cultivation with NaCl solution, the germination rate, germination potential and germination index of radish seeds first increase and then decline with increased concentration of ZnO NPs.

8.
Eur J Surg Oncol ; 50(10): 108485, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39047326

ABSTRACT

BACKGROUND: Localization of non-palpable melanoma, Merkel cell carcinoma (MCC) and soft tissue sarcoma (STS) lesions can be difficult due to size, location, and obesity of patients or fibrosis due to previous treatments. Magnetic seed localization (MSL) is a common method to localize non-palpable breast lesions, but the feasibility of MSL for non-palpable melanoma, MCC and STS lesions has not yet been described. METHODS: In this retrospective single center cohort study, all consecutive patients between January 2021 and October 2023 who had a resection of a non-palpable melanoma, MCC or STS lesion guided by Sirius Pintuition, a MSL technique, were included. The primary endpoint was successful lesion localization during surgery and the secondary endpoints were seed migration, negative resection margins, and complications. RESULTS: Seventy-nine seeds were placed for 76 lesions, which were resected during 68 surgeries in 61 patients. All lesions (100 %) were localized and resected. Median time of surgery was 44 min. No seed migration was observed. A negative resection margin was achieved for 60 (78.9 %) lesions. Clavien Dindo grade ≥2 complications occurred in 7.4 %. CONCLUSION: Magnetic seed localization with Sirius Pintuition is feasible for both non-palpable melanoma, MCC, and STS lesions.

9.
Environ Sci Pollut Res Int ; 31(32): 44995-45010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958855

ABSTRACT

Nanoparticles, owing to their unique physicochemical properties, have garnered significant attention in various scientific disciplines, including materials science, chemistry, biology, and environmental engineering. In recent years, the synthesis of metal oxide nanoparticles, such as NiO, Fe2O3, ZnO, SnO2, and CuO via green routes, has gained attraction due to their diverse applications in fields ranging from catalysis and electronics to medicine and environmental remediation. This study focuses on the green synthesis of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles using Calotropis gigantea (Apple of Sodom) leaf extract as a reducing agent and stabilizer, with zinc nitrate (ZnNO3.6H2O) and copper nitrate (CuNO3.3H2O) as precursors. The hexagonal phase of ZnO and monoclinic plan structure of CuO with high crystallinity was confirmed by XRD and elemental composition by EDX analysis. With the help of an SEM image, particle size measured for CuO and ZnO using ImageJ software was found to be 56.08 nm and 46.49 nm, respectively. This study investigates the efficacy of nanoparticles in wastewater treatment, particularly focusing on methylene blue dye decolorization using the statistical processing of response surface methodology (RSM) using the Box-Behnken method. Additionally, it explores the impact of synthesized nanoparticles on seed growth enhancement, using Vigna radiata (green gram) seeds immersed in various doses of nanoparticles (0, 0.5, 1, 1.5, 2 mg/30 mL). Furthermore, the antibacterial activity of the nanoparticles against both gram-positive and gram-negative bacteria is evaluated. The results confirm the effectiveness of the materials for methylene blue dye removal, achieving 80.53% with CuO and 78.25% with ZnO. Significant seed growth was observed with a low nanoparticle dosage of 1.5 mg/30 mL, resulting in the highest seedling vigour index and germination percentage. This reduces the need for fertilizers and lessens environmental impact.


Subject(s)
Anti-Bacterial Agents , Copper , Zinc Oxide , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/chemistry , Calotropis/chemistry , Metal Nanoparticles/chemistry , Green Chemistry Technology , Coloring Agents/chemistry
10.
Foods ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998488

ABSTRACT

Vegetable oils are rich in health-beneficial compounds, including fatty acids, phenolic compounds, natural antioxidants, and fat-soluble vitamins. However, oil extraction methods can influence their composition. This study aims to understand the chemical basis for developing a green process to extract oils from two Andean seeds, cañihua (Chenopodium pallidicaule) and tarwi (Lupinus mutabilis). Ethanol, considered a green solvent, is compared to petroleum ether used at the laboratory level and hexane used at the industrial scale for extracting oils. The extraction efficiency is assessed in terms of yield, fatty acids profile, polar and neutral lipids, tocopherols, phenolic compounds, and antioxidant capacity. The chemical composition of edible commercial oils, such as sunflower, rapeseed, and olive oils, was used as a reference. Hexane had the highest extraction yield, followed by petroleum ether and ethanol. However, the oils extracted with ethanol having yields of tarwi 15.5% and cañihua 5.8%, w/w showed the significatively superior content of tocopherols (α, γ, and δ); phenolic compounds; and antioxidant capacity. In addition, ethanol-extracted (EE) oils have higher levels of polar lipids, such as phosphatidylcholine and phosphatidylinositol, than those extracted with the other solvents. Remarkably, EE oils presented comparable or slightly higher levels of monounsaturated fatty acids than those extracted with hexane. Finally, compared to the commercial oils, tarwi and cañihua EE oils showed lower but acceptable levels of oleic, linoleic and palmitic acids and a wider variety of fatty acids (10 and 13, respectively). The composition of tarwi and cañahua oils extracted with ethanol includes compounds associated with nutritional and health benefits, providing a sustainable alternative for oil production.

11.
Foods ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998533

ABSTRACT

The aim of this study was to see whether it is possible to add camelina oil and seeds as ingredients in muffins in order to enhance their health-promoting value, such as their bioactive compound content, while maintaining the organoleptic attributes considered desirable by consumers. Camelina oil is characterised by a high linolenic acid content. Four types of muffins were prepared for analysis: MBnO-control muffins (containing 11.85% rapeseed oil), MCsO-muffins containing camelina oil instead of rapeseed oil, MCsS-muffins containing 6.65% camelina seeds in relation to the mass of prepared dough, and MCsOS-muffins containing both camelina oil and camelina seeds. The change in the fatty acid profile in muffins with the addition of camelina oil was significant; however, it was found that, as a result of thermal treatment, lower amounts of saturated fatty acids were formed. Among all the investigated experimental variants, muffins were characterised by the highest contents of all the phenolic acids analysed. The substitution of rapeseed oil with camelina oil had no negative effect on most of the organoleptic attributes of the muffins. Moreover, thanks to a greater content of carotenoids, camelina oil had an advantageous effect on the improvement of product colour, thus improving its overall desirability.

12.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999003

ABSTRACT

Tiliroside is a natural polyphenolic compound with a wide range of biological activity, and defatted strawberry seeds are its rich source. The goal of this study was to optimize accelerated solvent extraction (ASE) conditions, including temperature, solvent composition, and the number of extraction cycles, using Box-Behnken design to maximize the yield of tiliroside. UPLC-DAD-MS was applied to investigate the polyphenolic composition of the extracts, and preparative liquid chromatography (pLC) was used for isolation. All obtained mathematical models generally showed an increase in the efficiency of isolating polyphenolic compounds with an increase in temperature, ethanol content, and the number of extraction cycles. The optimal established ASE conditions for tiliroside were as follows: a temperature of 65 °C, 63% ethanol in water, and four extraction cycles. This allowed for the obtainment of a tiliroside-rich fraction, and the recovery of isolated tiliroside from plant material reached 243.2 mg from 100 g. Our study showed that ASE ensures the isolation of a tiliroside-rich fraction with high effectiveness. Furthermore, defatted strawberry seeds proved to be a convenient source of tiliroside because the matrix of accompanying components is relatively poor, which facilitates separation.


Subject(s)
Fragaria , Plant Extracts , Polyphenols , Seeds , Solvents , Fragaria/chemistry , Polyphenols/chemistry , Polyphenols/isolation & purification , Seeds/chemistry , Solvents/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Flavonoids/isolation & purification , Chemical Fractionation/methods
13.
Plants (Basel) ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999564

ABSTRACT

The enhancement of seed germination by using nanoparticles (NPs) holds the potential to elicit the synthesis of more desired compounds with important biomedical applications, such as preventing protein glycation, which occurs in diabetes. Here, we used 7 nm and 100 nm ZnO and 4.5 nm and 16.7 nm Fe2O3 NPs to treat sunflower seeds. We evaluated the effects on germination, total phenolic content, and the anti-glycation potential of extracted polyphenols. Sunflower seeds were allowed to germinate in vitro after soaking in NP solutions of different concentrations. Polyphenols were extracted, dosed, and used in serum albumin glycation experiments. The germination speed of seeds was significantly increased by the 100 nm ZnO NPs and significantly decreased by the 4.5 nm Fe2O3 NPs. The total phenolic content (TPC) of seeds was influenced by the type of NP, as ZnO NPs enhanced TPC, and the size of the NPs, as smaller NPs led to improved parameters. The polyphenols extracted from seeds inhibited protein glycation, especially those extracted from seeds treated with 7 nm ZnO. The usage of NPs impacted the germination speed and total polyphenol content of sunflower seeds, highlighting the importance of NP type and size in the germination process.

14.
Plants (Basel) ; 13(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38999587

ABSTRACT

Seed germination and dispersal have an important impact on the establishment and spread of invasive plants. Understanding the extent of intraspecific seed trait variations can enhance our understanding of how invasive plants respond to environmental change after introduction and help predict the dynamic of invasive species under future environmental conditions. However, less attention has been given to the variation in seed traits within species as opposed to among species. We compared seed production, seed morphological traits, dispersal ability, and seedling performance of Chromolaena odorata from 10 introduced populations in Asia and 12 native populations in America in a common garden. The results showed that range (introduced vs. native) and climate affected these traits. Compared with the native population, the introduced populations had higher seed numbers per capitula, lighter seeds, and higher potential dispersal ability seeds (lower terminal velocity) but lower germination rates and seedling lengths. Climatic clines in seed numbers per capitula and pappus length were observed; however, the clines in pappus length differed between the introduced and native populations. Trait covariation patterns were also different between both ranges. In the native populations, there was a trade-off between seed numbers per capitula and seed mass, while this relationship was not found for the introduced populations. These results indicate that C. odorata alters the ecological strategy of seed following invasion, which facilitates its establishment and fast dispersal and contributes to successful invasion in the introduced ranges.

15.
Ultrason Sonochem ; 108: 106949, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003930

ABSTRACT

Investigating the extraction of bioactive compounds represents a hopeful direction for maximizing the value of longan fruit byproducts. This study explored the influence of ultrasonic-assisted extraction (UAE) parameters-specifically ultrasonic power ratios, temperatures, and exposure times-utilizing water as a green solvent on several properties of the longan seeds extract (LSE). These properties encompassed the energy consumption of the UAE process (EC), extraction yield (EY), total phenolic contents (TPC), total flavonoid contents (TFC), and antioxidant activity (DPPH). Additionally, the study sought to optimize the conditions of UAE process and examine its thermodynamic properties. A three-level, three-factor full factorial design was utilized to assess the effects of different factors on LSE properties. Results indicated that EC, EY, TPC, TFC, and DPPH were significantly influenced by power ratios, temperatures, and exposure time. Moreover, the proposed models effectively characterized the variations in different properties during the extraction process. The optimized extraction conditions, aimed at minimizing EC while maximizing EY, TPC, TFC, and DPPH radical scavenging activity, were demonstrated as an ultrasonic power ratio of 44.4 %, a temperature of 60 °C, and an extraction time of 17.7 min. Optimization led to 563 kJ for EC, 7.85 % for EY, 47.21 mg GAE/mL for TPC, 96.8 mg QE/mL for TFC, and 50.15 % for DPPH radical scavenging activity. The results emphasized that the UAE process exhibited characteristics of endothermicity and spontaneity. The results provide valuable insights that could inform the enhancement of extraction processes, potentially benefiting industrial utilization and pharmaceutical formulations.


Subject(s)
Antioxidants , Chemical Fractionation , Powders , Seeds , Ultrasonic Waves , Seeds/chemistry , Kinetics , Chemical Fractionation/methods , Antioxidants/isolation & purification , Antioxidants/chemistry , Temperature , Phenols/isolation & purification , Phenols/chemistry , Flavonoids/isolation & purification , Flavonoids/chemistry , Sonication/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124815, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024789

ABSTRACT

Rapid identification of soybean seed varieties is crucial for agricultural production and seed quality. Identifying varieties of soybean seed using conventional chemical methods is time-consuming, destructive, and inappropriate for seed quality evaluation. This study utilized hyperspectral imaging technology (HSI) to identify four varieties of soybean seeds. The hyperspectral images of soybean seeds were collected in the spectral range of 400-1000 nm. A multi-level data fusion strategy based on spectral and image information was proposed to improve the accuracy of model. Subsequently, the multi-level data fusion strategy based on partial least squares discriminant analysis (PLS-DA) was used to establish the classification models of soybean seeds. Compared with the models using individual analytical sources, the results demonstrated that the models with multi-level data fusion strategy obtained better prediction performance. The high-level data fusion (HLDF) based on Bayesian consensus provided the optimal results with an accuracy (Acc) and F1-score of 93.13 % and 93.70 % in the prediction phase, respectively. Therefore, the multi-level data fusion strategy can be used as an identification method for soybean seed varieties and an effective approach to enhance the discriminatory capability of models.

17.
Int J Biol Macromol ; 275(Pt 1): 133570, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955297

ABSTRACT

The physicochemical features of starches separated from tea seeds of 25 cultivars were analyzed. The distinct characteristic of tea seed starches was that they had high apparent amylose content (AAC, 28.94-39.91 %) and resistant starch contents (4.64-8.24 %), suggesting that tea starch can be used for production of low glycemic index food. One cultivar (T12) had smallest breakdown (74.2 RVU) and highest gel hardness, indicating it performed stably during shear thinning, resulting in a firm texture. Another cultivar (T25) had a peak viscosity of 417.6 RVU, a large breakdown and small setback, suggesting a low tendency for retrogradation. There was a range of 61.6 °C to 77.5 °C for the peak gelatinization temperature and 0.163 to 0.390 for the flow behavior index values. These parameters could serve for selecting suitable starches with minor differences in physicochemical properties for food use. Correlation analysis indicated that AAC is a key factor determining starch retrogradation properties. The broad genetic diversity in the tea seed starch physicochemical features provided potentially versatile applications in the food industry. The results gained from the present study contribute to a better understanding of tea seed starch quality, and encourage its application in many value-added food products.

18.
Microorganisms ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39065116

ABSTRACT

Seed endophytes in maize, which facilitate the transmission of microorganisms from one plant generation to the next, may play a crucial role in plant protection and growth promotion. This study aimed to investigate the effects of various maize varieties on the communities of endophytic bacteria in seeds and germinating roots. This study utilized Illumina high-throughput sequencing technology to examine the structural and diversity differences of endophytic bacterial communities within seed maize (BY1507), silage maize (QQ446), and wild maize (Teosinte) in both seeds and germinating roots. The results showed that 416 bacterial genera were detected, with Pantoea, Lachnospiraceae, Pararhizobium, Enterobacteriaceae, Stenotrophomonas, and Pseudonocardia being the most prevalent (relative abundance > 10%) at the genus level. No significant difference was observed in diversity indices (Chao1, ACE, Shannon, and Simpson) of seed endophytes among BY1507, QQ446, and Teosinte. The Shannon and Simpson indices for the germinating root endophyte from the wild variety (Teosinte) were significantly higher than the domesticated varieties (BY1507 and QQ446). PCoA revealed a notable overlap in the endophytic bacterial communities from the seeds of BY1507, QQ446, and Teosinte. Yet, clustering patterns were found. Co-occurrence network analysis showed that BY1507, QQ446, and Teosinte share a notable proportion of shared endophytic bacteria (>30%) between the seeds and germinating roots. This investigation elucidates the characteristics of endophytic microbial communities of seeds and germinating roots with seed maize, silage maize, and wild maize, offering data for future research on the physiological ecological adaptation of these endophytic microbial communities.

19.
Plants (Basel) ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065465

ABSTRACT

This study investigated the molecular, phytochemical, and biological aspects of ten local Moroccan traditional landrace Cannabis seeds. Genetic polymorphisms were analyzed using DNA barcode determination, revealing two distinct molecular profiles: "Cannabis, species sativa, subspecies indica" and "Cannabis, species sativa, subspecies sativa". Furthermore, a new sequence was identified by sequencing of the THCA synthase coding gene. Chemical profiling via HPLC-ESI-FULL-MS and GC-MS-MS of AMSD1 maceration extracts revealed 13 non-volatile chemicals, including 3 inactive cannabinoids and 3 polyphenols, and 24 intriguing volatile compounds, including 7 previously unreported in Cannabis seed extracts. Moreover, the in vitro/in silico analysis provision of biological activities through their antioxidant power, antimicrobial effect, and cytotoxicity potency, as well as antiviral activity, were realized. These results contribute to a thorough comprehension of Moroccan Cannabis seeds, illuminating their molecular, phytochemical, and biological features. Furthermore, they highlight the seeds as a potential source of nutritious components with antioxidant properties, offering valuable insights for future research.

20.
Heliyon ; 10(12): e32503, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952368

ABSTRACT

Sour orange (Citrus aurantium) seeds are typically discarded by juice processors as waste. This study aimed to extract protein isolates, produce hydrolysates from de-oiled sour orange seeds (SOS), and characterize their physicochemical properties. Previous studies have described methods to obtain protein isolates and hydrolysates from agricultural residues. However, there is limited data on the SOS. This research characterized protein isolates and hydrolysates from SOS, emphasizing yield, purity, and amino acid composition. Protein isolates were extracted using borate saline buffer, saline, and distilled water. Enzymatically hydrolysis was conducted using Protamex® (a commercial protease) at concentrations ranging from 0.2 to 5 g enzyme/100g protein isolate. Differential scanning calorimetry, electrophoresis, and FT-IR spectroscopy were utilized to characterize the isolates and hydrolysates. Data showed that using 5 % saline resulted in protein extraction with a yield and purity of 30 and 86 %, respectively. DSC analysis revealed that the denaturation temperature of the protein isolate was 68 °C, while the hydrolysates exhibited structural instability, as indicated by a decrease in enthalpy change compared to the isolate. The protein isolate had a 76° contact angle. The amino acid profile showed a significant presence of glutamic acid (130.530 mg/g) and arginine (70.210 mg/g). Electrophoresis analysis exhibited four major bands of the protein. The bands' intensity decreased, and new bands appeared after hydrolysis. The enzyme hydrolysis was confirmed using the O-phthaldialdehyde method and FTIR. Findings revealed that based on the free amine group quantity, the hydrolysate obtained using 5 g enzyme/100g protein isolate was 14.220 ± 0.299 µmol/mg protein. The study concluded that sour orange seeds are a good source of protein, with protein isolates and hydrolysates exhibiting desirable characteristics. More research needs to be conducted to acquire further information about their functional properties and potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL