Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.943
Filter
1.
PNAS Nexus ; 3(7): pgae235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952456

ABSTRACT

We investigate the boundary between chemotaxis driven by spatial estimation of gradients and chemotaxis driven by temporal estimation. While it is well known that spatial chemotaxis becomes disadvantageous for small organisms at high noise levels, it is unclear whether there is a discontinuous switch of optimal strategies or a continuous transition exists. Here, we employ deep reinforcement learning to study the possible integration of spatial and temporal information in an a priori unconstrained manner. We parameterize such a combined chemotactic policy by a recurrent neural network and evaluate it using a minimal theoretical model of a chemotactic cell. By comparing with constrained variants of the policy, we show that it converges to purely temporal and spatial strategies at small and large cell sizes, respectively. We find that the transition between the regimes is continuous, with the combined strategy outperforming in the transition region both the constrained variants as well as models that explicitly integrate spatial and temporal information. Finally, by utilizing the attribution method of integrated gradients, we show that the policy relies on a nontrivial combination of spatially and temporally derived gradient information in a ratio that varies dynamically during the chemotactic trajectories.

2.
Ecol Evol ; 14(7): e11649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952663

ABSTRACT

Drylands are unique among terrestrial ecosystems in that they have a significant proportion of primary production facilitated by non-vascular plants such as colonial cyanobacteria, moss, and lichens, i.e., biocrusts, which occur on and in the surface soil. Biocrusts inhabit all continents, including Antarctica, an increasingly dynamic continent on the precipice of change. Here, we describe in-situ field surveying and sampling, remote sensing, and modeling approaches to assess the habitat suitability of biocrusts in the Lake Fryxell basin of Taylor Valley, Antarctica, which is the main site of the McMurdo Dry Valleys Long-Term Ecological Research Program. Soils suitable for the development of biocrusts are typically wetter, less alkaline, and less saline compared to unvegetated soils. Using random forest models, we show that gravimetric water content, electrical conductivity, and snow frequency are the top predictors of biocrust presence and biomass. Areas most suitable for the growth of dense biocrusts are soils associated with seasonal snow patches. Using geospatial data to extrapolate our habitat suitability model to the whole basin predicts that biocrusts are present in 2.7 × 105 m2 and contain 11-72 Mg of aboveground carbon, based on the 90% probability of occurrence. Our study illustrates the synergistic effect of combining field and remote sensing data for understanding the distribution and biomass of biocrusts, a foundational community in the carbon balance of this region. Extreme weather events and changing climate conditions in this region, especially those influencing snow accumulation and persistence, could have significant effects on the future distribution and abundance of biocrusts and therefore soil organic carbon storage in the McMurdo Dry Valleys.

3.
mBio ; : e0156224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953351

ABSTRACT

Nasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar [0.3% (wt/vol)] plate assays, we demonstrate the rapid surface dispersal of (peri)oral isolates of Staphylococcus aureus and Staphylococcus epidermidis and closely related laboratory strains in the presence of mucin glycoproteins. Mucin-induced dispersal was a stepwise process initiated by the passive spreading of the growing colonies followed by their rapid branching (dendrites) from the colony edge. Although most spreading strains used mucin as a growth substrate, dispersal was primarily dependent on the lubricating and hydrating properties of the mucins. Using S. aureus JE2 as a genetically tractable representative, we demonstrate that mucin-induced dendritic dispersal, but not colony spreading, is facilitated by the secretion of surfactant-active phenol-soluble modulins (PSMs) in a process regulated by the agr quorum-sensing system. Furthermore, the dendritic dispersal of S. aureus JE2 colonies was further stimulated in the presence of surfactant-active supernatants recovered from the most robust (peri)oral spreaders of S. aureus and S. epidermidis. These findings suggest complementary roles for lubricating mucins and staphylococcal PSMs in the active dispersal of potentially pathogenic strains from perioral to respiratory mucosae, where gel-forming, hydrating mucins abound. They also highlight the impact that interspecies interactions have on the co-dispersal of S. aureus with other perioral bacteria, heightening the risk of polymicrobial infections and the severity of the clinical outcomes. IMPORTANCE: Despite lacking classical motility machinery, nasopharyngeal staphylococci spread rapidly in (peri)oral and respiratory mucosa and cause cross-infections. We describe laboratory conditions for the reproducible study of staphylococcal dispersal on mucosa-like surfaces and the identification of two dispersal stages (colony spreading and dendritic expansion) stimulated by mucin glycoproteins. The mucin type mattered as dispersal required the surfactant activity and hydration provided by some mucin glycoproteins. While colony spreading was a passive mode of dispersal lubricated by the mucins, the more rapid and invasive form of dendritic expansion of Staphylococcus aureus and Staphylococcus epidermidis required additional lubrication by surfactant-active peptides (phenol-soluble modulins) secreted at high cell densities through quorum sensing. These results highlight a hitherto unknown role for gel-forming mucins in the dispersal of staphylococcal strains associated with cross-infections and point at perioral regions as overlooked sources of carriage and infection by staphylococci.

4.
mBio ; : e0073224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953353

ABSTRACT

Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.

5.
Adv Sci (Weinh) ; : e2402767, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953387

ABSTRACT

Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N-1, superior thermal sensitivity of 34,400 Ω °C-1, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.

6.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953411

ABSTRACT

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

7.
Magn Reson Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953429

ABSTRACT

PURPOSE: To assess the potential for accelerating continuous-wave (CW) T1ρ dispersion measurement with compressed sensing approach via studying the effect that the data reduction has on the ability to detect differences between intact and degenerated articular cartilage with different spin-lock amplitudes and to assess quantitative bias due to acceleration. METHODS: Osteochondral plugs (n = 27, 4 mm diameter) from femur (n = 14) and tibia (n = 13) regions from human cadaver knee joints were obtained from commercial biobank (Science Care, USA) under Ethical permission 134/2015. MRI of specimens was performed at 9.4T with magnetization prepared radial balanced SSFP (bSSFP) readout sequence, and the CWT1ρ relaxation time maps were computed from the measured data. The relaxation time maps were evaluated in the cartilage zones for different acceleration factors. For reference, Osteoarthritis Research Society International (OARSI) grading and biomechanical measurements were performed and correlated with the MRI findings. RESULTS: Four-fold acceleration of CWT1ρ dispersion measurement by compressed sensing approach was feasible without meaningful loss in the sensitivity to osteoarthritic (OA) changes within the articular cartilage. Differences were significant between intact and OA groups in the superficial and transitional zones, and CWT1ρ correlated moderately with the reference measurements (0.3 < r < 0.7). CONCLUSION: CWT1ρ was able to differentiate between intact and OA cartilage even with four-fold acceleration. This indicates that acceleration of CWT1ρ dispersion measurement by compressed sensing approach is feasible with negligible loss in the sensitivity to osteoarthritic changes in articular cartilage.

8.
Biosens Bioelectron ; 262: 116526, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38954905

ABSTRACT

Neurotransmitters (NTs) are molecules produced by neurons that act as the body's chemical messengers. Their abnormal levels in the human system have been associated with many disorders and neurodegenerative diseases, which makes the monitoring of NTs fundamentally important. Specifically for clinical analysis and understanding of brain behavior, simultaneous detection of NTs at low levels quickly and reliably is imperative for disease prevention and early diagnosis. However, the methods currently employed are usually invasive or inappropriate for multiple NTs detection. Herein, we developed a MXene-based impedimetric electronic tongue (e-tongue) for sensitive NT monitoring, using Nb2C, Nb4C3, Mo2C, and Mo2Ti2C3 MXenes as sensing units of the e-tongue, and Principal Component Analysis (PCA) as the data treatment method. The high specific surface area, distinct electrical properties, and chemical stability of the MXenes gave rise to high sensitivity and good reproducibility of the sensor array toward NT detection. Specifically, the e-tongue detected and differentiated multiple NTs (acetylcholine, dopamine, glycine, glutamate, histamine, and tyrosine) at concentrations as low as 1 nmol L-1 and quantified NTs present in a mixture. Besides, analyses performed with interferents and actual samples confirmed the system's potential to be used in clinical diagnostics. The results demonstrate that the MXene-based e-tongue is a suitable, rapid, and simple method for NT monitoring with high accuracy and sensitivity.

9.
Pflugers Arch ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38955833

ABSTRACT

Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.

10.
Small ; : e2401273, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958069

ABSTRACT

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

11.
Small ; : e2403629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958098

ABSTRACT

Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.

12.
IEEE Trans Circuits Syst II Express Briefs ; 71(7): 3298-3302, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961880

ABSTRACT

This brief presents an on-chip digital intensive frequency-locked loop (DFLL)-based wakeup timer with a time-domain temperature compensation featuring a embedded temperature sensor. The proposed compensation exploits the deterministic temperature characteristics of two complementary resistors to stabilize the timer's operating frequency across the temperature by modulating the activation time window of the two resistors. As a result, it achieves a fine trimming step (± 1 ppm), allowing a small frequency error after trimming (<± 20 ppm). By reusing the DFLL structure, instead of employing a dedicated sensor, the temperature sensing operates in the background with negligible power (2 %) and hardware overhead (< 1 %). The chip is fabricated in 40 nm CMOS, resulting in 0.9 pJ/cycle energy efficiency while achieving 8 ppm/ºC from -40ºC to 80ºC.

13.
Data Brief ; 54: 110297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962194

ABSTRACT

Satellite-observed land surface phenology (LSP) data have helped us better understand terrestrial ecosystem dynamics at large scales. However, uncertainties remain in comprehending LSP variations in Central Asian drylands. In this article, an LSP dataset covering Central Asia (45-100°E, 33-57°N) is introduced. This LSP dataset was produced based on Moderate Resolution Imaging Spectroradiometer (MODIS) 0.05-degree daily reflectance and land cover data. The phenological dynamics of drylands were tracked using the seasonal profiles of near-infrared reflectance of vegetation (NIRv). NIRv time series processing involved the following steps: identifying low-quality observations, smoothing the NIRv time series, and retrieving LSP metrics. In the smoothing step, a median filter was first applied to reduce spikes, after which the stationary wavelet transform (SWT) was used to smooth the NIRv time series. The SWT was performed using the Biorthogonal 1.1 wavelet at a decomposition level of 5. Seven LSP metrics were provided in this dataset, and they were categorized into the following three groups: (1) timing of key phenological events, (2) NIRv values essential for the detection of the phenological events throughout the growing season, and (3) NIRv value linked to vegetation growth state during the growing season. This LSP dataset is useful for investigating dryland ecosystem dynamics in response to climate variations and human activities across Central Asia.

14.
J Colloid Interface Sci ; 674: 993-1003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964003

ABSTRACT

The Sabatier principle in heterogeneous catalysis provides guidance for designing optimal catalysts with the highest activity. We report a new Sabatier phenomenon induced by nanoclusters on different atomic scales in gas-sensitive reactions. We prepared a series of Ag nanocluster catalysts with coordination structures ranging from Ag0 to Ag13 through a surface coordination strategy. When used as catalysts for gas-sensitive reactions, a volcano-type relationship between the coordination number of Ag nanoclusters and gas-sensitive activity emerges, with a summit at a moderate coordination of Ag5. Mechanistic studies show that the efficient adsorption of activated *C2H6O on electron-rich Ag5 clusters is a key factor for the Sabatier phenomenon (adsorption energy from -0.322 eV to -0.663 eV), which leads to highly selective sensing. We found that the catalyst electron-rich surface layer induced by Ag5 clusters serves as a descriptor to explain the structure-activity relationship. Furthermore, due to the well-defined geometric and electronic structures in the Ag5 clusters, the optimized catalyst achieves both maximum activity and selectivity in chemoselective sensing reactions. This study reveals the Sabatier principle and provides insightful guidance for the rational design of more efficient and practical nanocluster catalysts for heterogeneous catalysis.

15.
J Colloid Interface Sci ; 675: 14-23, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964121

ABSTRACT

Conductive hydrogels are pivotal for the advancement of flexible sensors, electronic skin, and healthcare monitoring systems, facilitating transformative innovations. However, issues such as inadequate intrinsic compatibility, mismatched mechanical properties, and limited stability curtail their potential, resulting in compromised device efficacy and performance degradation. In this research, we engineered functional hydrogels featuring a dual-crosslinked network composed of (PA/PVA)-P(AM-AA) to address these challenges. This design eliminates the need for conductive additives, thereby enhancing intrinsic compatibility. Notably, the hydrogels exhibit exceptional mechanical properties, with high tensile strength (∼700 %), Young's modulus (∼5.33 MPa), increased strength (∼2.46 MPa) and toughness (∼6.59 MJ m-3). They also achieve a compressive strength of âˆ¼7.33 MPa at 80 % maximal compressive strain and maintain about 89 % transparency. Moreover, flexible sensors derived from these hydrogels demonstrate enhanced multimodal sensing capabilities, including temperature, strain, and pressure detection, enabling precise monitoring of human movements. The integration of multiple hydrogels into a three-dimensional sensor array facilitates detailed spatial pressure distribution mapping. By strategically applying dual-crosslinked network engineering and eliminating conductive additives, we have streamlined the design and manufacturing of hydrogels to meet the rising demand for high-performance wearable sensors.

16.
Small Methods ; : e2400045, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967324

ABSTRACT

The success of a nanopore experiment relies not only on the quality of the experimental design but also on the performance of the analysis program utilized to decipher the ionic perturbations necessary for understanding the fundamental molecular intricacies. An event extraction framework is developed that leverages parallel computing, efficient memory management, and vectorization, yielding significant performance enhancement. The newly developed abf-ultra-simple function extracts key parameters from the header critical for the operation of open-seek-read-close data loading architecture running on multiple cores. This underpins the swift analysis of large files where an ≈ × 18 improvement is found for a 100 min-long file (≈4.5 GB) compared to the more traditional single (cell) array data loading method. The application is benchmarked against five other analysis platforms showcasing significant performance enhancement (>2 ×-1120 ×). The integrated provisions for batch analysis enable concurrently analyzing multiple files (vital for high-bandwidth experiments). Furthermore, the application is equipped with multi-level data fitting based on abrupt changes in the event waveform. The application condenses the extracted events to a single binary file improving data portability (e.g., 16 GB file with 28 182 events reduces to 47.9 MB-343 × size reduction) and enables a multitude of post-analysis extractions to be done efficiently.

17.
Chemistry ; : e202401385, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967595

ABSTRACT

Four new complexes [Ru(bpy)2(bbib)](PF6)2, [Ru(phen)2(bbib)](PF6)2, [Re(CO)3(bbib)(py)](PF6) and [Ir(ppy)2(bbib)](PF6) [where bbib = 4,4'-bis(benzimidazol-2-yl)-2,2'-bipyridine] have been prepared and their photophysical properties determined. Their behaviour has been studied with a variety of anions in acetonitrile, DMSO and 10% aquated DMSO. Acetate and dihydrogenphosphate demonstrate a redshift in the bbib ligand associated absorptions suggesting that the ligand is strongly interacting with these anions. The 3MLCT emissive state is sensitive to the introduction of small quantities of anion (sub-stoichiometric quantities) and significant quenching is typically observed with acetate, although this is less pronounced in the presence of water. The emissive behaviour with dihydrogenphosphate is variable, showing systematic changes as anion concentration increases with several distinct interactions evident . 1H NMR and 31P NMR titrations in a 10% D2O - D6-DMSO mixture suggest that with dihydrogenphosphate, the imidazole group able to act as both a proton acceptor and donor. It appears that all four complexes can form a {[complex]2-H2PO4} "dimer", a one-to-one species (which the X-ray crystallography study suggests is dimeric in the solid-state), and a complex with a combined bis(dihydrogenphosphate) complex anion. The speciation relies on complex equilibria dependent on several factors including the complex charge, the hydrophobicity of the associated ligands, and the solvent.

18.
J Colloid Interface Sci ; 675: 336-346, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972121

ABSTRACT

The development of soft hydrogel actuators with outstanding mechanical properties, fast actuation speed, and available quantification of self-sensing actuation remains a challenging endeavor. In this work, dopamine-decorated polypyrrole nanofibers (DAPPy) were introduced into the polyethylene glycol diacrylate (PEGDA)-crosslinked poly(N-isopropyl acrylamide) network to generate a stretchable, NIR-responsive, and strain sensitive DAPPy/PNIPAM hydrogel layer. Besides, this active layer was combined with the passive ligninsulfonate sodium/polyacrylamide (LS/PAAM) to give DAPPy/PNIPAM//LS/PAAM bilayer hydrogel actuator, which exhibits ultrafast thermo-responsive actuation (19°/s) and underwater grasping and lifting performance. Moreover, the DAPPy/PNIPAM layer has excellent electrical conductivity (0.29 S/m) and thermal conversion ability (10.8 °C/min), which enable such a conductive hydrogel to act as a highly sensitive strain and temperature sensor with real-time resistance change in response to tensile strain (gauge factor up to 3.4), applied pressure, temperature, and remote NIR light irradiation. More importantly, the bilayer hydrogel actuator can integrate both actuation and self-sensing functions through the bending angle-surface temperature-relative resistance change relationship of the photothermal process. With excellent mechanical actuation and self-sensing ability, the resulting bilayer hydrogel showed a promising application potential as soft biomimetic actuating materials and soft intelligent actuators.

19.
J Environ Manage ; 366: 121622, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972185

ABSTRACT

Land-use land-cover (LULC) change contributes to major ecological impacts, particularly in areas undergoing land abandonment, inducing modifications on habitat structure and species distributions. Alternative land-use policies are potential solutions to alleviate the negative impacts of contemporary tendencies of LULC change on biodiversity. This work analyzes these tendencies in the Montesinho Natural Park (Portugal), an area representative of European abandoned mountain rural areas. We built ecological niche models for 226 species of vertebrates (amphibians, reptiles, birds, and mammals) and vascular plants, using a consensus modelling approach available in the R package 'biomod2'. We projected the models to contemporary (2018) and future (2050) LULC scenarios, under four scenarios aiming to secure relevant ecosystem services and biodiversity conservation for 2050: an afforestation and a rewilding scenario, focused on climate-smart management strategies, and a farmland and an agroforestry recovery scenario, based on re-establishing human traditional activities. We quantified the influences of these scenarios on biodiversity through species habitat suitability changes for 2018-2050. We analyzed how these management strategies could influence indices of functional diversity (functional richness, functional evenness and functional dispersion) within the park. Habitat suitability changes revealed complementary patterns among scenarios. Afforestation and rewilding scenarios benefited more species adapted to habitats with low human influence, such as forests and open woodlands. The highest functional richness and dispersion was predicted for rewilding scenarios, which could improve landscape restoration and provide opportunities for the expansion and recolonization of forest areas by native species. The recovery of traditional farming and agroforestry activities results in the lowest values of functional richness, but these strategies contribute to complex landscape matrices with diversified habitats and resources. Moreover, this strategy could offer opportunities for fire suppression and increase landscape fire resistance. An integrative approach reconciling rewilding initiatives with the recovery of extensive agricultural and agroforestry activities is potentially an harmonious strategy for supporting the provision of ecosystem services while securing biodiversity conservation and functional diversity within the natural park.

20.
Talanta ; 278: 126480, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38972275

ABSTRACT

The prevalence of metabolic disorders has been found to increase concomitantly with alternations in habitual diet and lifestyle, indicating the importance of metabolic health monitoring for early warning of high-risk status and suggesting effective intervention strategies. Hippuric acid (HA), as one of the most abundant metabolites from the gut microbiota, holds potential as a regulator of metabolic health. Accordingly, it is imperative to establish an efficient, sensitive, and affordable method for large-scale population monitoring, revealing the association between HA level and metabolic disorders. Upon systematic screening of macrocycle•dye reporter pair, a supramolecular architecture (guanidinomethyl-modified calix[5]arene, GMC5A) was employed to sense urinary HA by employing fluorescein (Fl), whose complexation behavior was demonstrated by theoretical calculations, accomplishing quantification of HA in urine from 249 volunteers in the range of 0.10 mM and 10.93 mM. Excitedly, by restricted cubic spline, urinary HA concentration was found to have a significantly negative correlation with the risk of metabolic disorders when it exceeded 0.76 mM, suggesting the importance of dietary habits, especially the consumption of fruits, coffee, and tea, which was unveiled from a simple questionnaire survey. In this study, we accomplished a high throughput and sensitive detection of urinary HA based on supramolecular sensing with the GMC5A•Fl reporter pair, which sheds light on the rapid quantification of urinary HA as an indicator of metabolic health status and early intervention by balancing the daily diet.

SELECTION OF CITATIONS
SEARCH DETAIL