Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 963
Filter
1.
Biophys Rev ; 16(3): 265-267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39099842

ABSTRACT

This commentary provides a retrospective on the Ascona B-DNA Consortium (ABC) initiative and on the conference held in April 2023 at Ascona, Switzerland, where we celebrated 22 years of the consortium, sharing the latest advances in simulations and experiments of the effects of sequence on the mechanical properties of DNA from electrons to nucleosomes.

2.
Protein Sci ; 33(9): e5134, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39145435

ABSTRACT

Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs. Notably, calorimetric evidence indicated that ancestral TIM monomers are more structured than extant ones. To further increase confidence about the function, structure, and stability of the LOCATIM, in this work, we applied two different inference methodologies and the worst plausible case scenario for both of them, to infer four sequences of this ancestor and test the robustness of their physicochemical properties. The extensive biophysical characterization of the four reconstructed sequences of LOCATIM showed very similar hydrodynamic and spectroscopic properties, as well as ligand-binding energetics and catalytic parameters. Their 3D structures were also conserved. Although differences were observed in melting temperature, all LOCATIMs showed reversible urea-induced unfolding transitions, and for those that reached equilibrium, high conformational stability was estimated (ΔGTot = 40.6-46.2 kcal/mol). The stability of the inactive monomeric intermediates was also high (ΔGunf = 12.6-18.4 kcal/mol), resembling some protozoan TIMs rather than the unstable monomer observed in extant opisthokonts. A comparative analysis of the 3D structure of ancestral and extant TIMs shows a correlation between the higher stability of the ancestral monomers with the presence of several hydrogen bonds located in the "bottom" part of the barrel.


Subject(s)
Triose-Phosphate Isomerase , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Animals , Evolution, Molecular , Protein Multimerization , Models, Molecular , Enzyme Stability
3.
Subcell Biochem ; 104: 33-47, 2024.
Article in English | MEDLINE | ID: mdl-38963482

ABSTRACT

Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.


Subject(s)
Catalase , Evolution, Molecular , Catalase/chemistry , Catalase/genetics , Catalase/metabolism , Humans , Animals , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Heme/chemistry , Heme/metabolism
4.
Article in English | MEDLINE | ID: mdl-39041050

ABSTRACT

This study aimed to detect, isolate and to characterize by molecular methods a relapsing fever group (RFG) Borrelia in white-eared opossums (Didelphis albiventris) from Brazil. During 2015-2018, when opossums (Didelphis spp.) were captured in six municipalities of the state of São Paulo, Brazil, molecular analyses revealed the presence of a novel RFG Borrelia sp. in the blood of seven opossums (Didelphis albiventris), out of 142 sampled opossums (4.9% infection rate). All seven infected opossums were from a single location (Ribeirão Preto municipality). In a subsequent field study in Ribeirão Preto during 2021, two new opossums (D. albiventris) were captured, of which one contained borrelial DNA in its blood. Macerated tissues from this infected opossum were inoculated into laboratory animals (rodents and rabbits) and two big-eared opossums (Didelphis aurita), which had blood samples examined daily via dark-field microscopy. No spirochetes were visualized in the blood of the laboratory animals. Contrastingly, spirochetes were visualized in the blood of the two D. aurita opossums between 12 and 25 days after inoculation. Blood samples from these opossums were used for a multi-locus sequencing typing (MLST) based on six borrelial loci. Phylogenies inferred from MLST genes positioned the sequenced Borrelia genotype into the RFG borreliae clade basally to borreliae of the Asian-African group, forming a monophyletic group with another Brazilian isolate, "Candidatus B. caatinga". Based on this concatenated phylogenetic analysis, which supports that the new borrelial isolate corresponds to a putative new species, we propose the name "Candidatus Borrelia mimona".

5.
Ophthalmic Genet ; 45(5): 532-536, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38956867

ABSTRACT

BACKGROUND: Fleck corneal dystrophy (FCD) is a rare autosomal dominant disease that affects exclusively the corneal stroma. The disease is caused by heterozygous variants in PIKFYVE, a gene encoding a lipid kinase involved in multiple cellular pathways, primarily participating in membrane dynamics and signaling. This report describes a familial case of FCD caused by a complete deletion of the PIKFYVE gene. MATERIAL AND METHODS: A clinical ophthalmic examination was performed on the proband and family members. Genetic testing included next-generation sequencing (multigene panel), and chromosomal microarray analysis. A quantitative PCR assay was designed in order to segregate the deletion. RESULTS: A 19-year-old male, with no family or personal history of ocular disease, presented for evaluation due to an acute illness consisting of burning, foreign body sensation, and red eye. Slit lamp biomicroscopy revealed bilateral small pterygia and scattered bilateral white opacities in the corneal stroma, a very similar corneal phenotype was found in the 47-year-old father, who was asymptomatic. NGS detected a heterozygous deletion of the entire PIKFYVE coding sequence. CMA in DNA from the propositus indicated a 543 kb deletion in 2q33.3q34 spanning the entire PIKFYVE gene. The deletion was confirmed in the father. CONCLUSIONS: We add to the molecular spectrum of FCD by describing a familial case of a whole PIKFYVE gene deletion in affected subjects. Our findings support that normal expression of PIKFYVE is necessary for corneal keratocytes homeostasis and normal corneal appearance. We conclude that PIKFYVE haploinsufficiency is the molecular mechanism underlying this familial case of FCD.


Subject(s)
Corneal Dystrophies, Hereditary , Pedigree , Phosphatidylinositol 3-Kinases , Humans , Male , Young Adult , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Middle Aged , Gene Deletion , Female , Adult , Sequence Deletion , High-Throughput Nucleotide Sequencing
6.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39028633

ABSTRACT

Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.


Subject(s)
Campylobacter jejuni , Chickens , Evolution, Molecular , Genome, Bacterial , Campylobacter jejuni/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/classification , Brazil , Animals , Chickens/microbiology , Humans , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Host Adaptation/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Phylogeny
7.
BMC Bioinformatics ; 25(1): 217, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890569

ABSTRACT

BACKGROUND: Tandem repeats are specific sequences in genomic DNA repeated in tandem that are present in all organisms. Among the subcategories of TRs we have Satellite repeats, that is divided into macrosatellites, minisatellites, and microsatellites, being the last two of specific interest because they can identify polymorphisms between organisms due to their instability. Currently, most mining tools focus on Simple Sequence Repeats (SSR) mining, and only a few can identify SSRs in the coding regions. RESULTS: We developed a microsatellite mining software called SATIN (Micro and Mini SATellite IdentificatioN tool) based on a new sliding window algorithm written in C and Python. It represents a new approach to SSR mining by addressing the limitations of existing tools, particularly in coding region SSR mining. SATIN is available at https://github.com/labgm/SATIN.git . It was shown to be the second fastest for perfect and compound SSR mining. It can identify SSRs from coding regions plus SSRs with motif sizes bigger than 6. Besides the SSR mining, SATIN can also analyze SSRs polymorphism on coding-regions from pre-determined groups, and identify SSRs differentially abundant among them on a per-gene basis. To validate, we analyzed SSRs from two groups of Escherichia coli (K12 and O157) and compared the results with 5 known SSRs from coding regions. SATIN identified all 5 SSRs from 237 genes with at least one SSR on it. CONCLUSIONS: The SATIN is a novel microsatellite search software that utilizes an innovative sliding window technique based on a numerical list for repeat region search to identify perfect, and composite SSRs while generating comprehensible and analyzable outputs. It is a tool capable of using files in fasta or GenBank format as input for microsatellite mining, also being able to identify SSRs present in coding regions for GenBank files. In conclusion, we expect SATIN to help identify potential SSRs to be used as genetic markers.


Subject(s)
Data Mining , Microsatellite Repeats , Polymorphism, Genetic , Software , Microsatellite Repeats/genetics , Data Mining/methods , Algorithms , Open Reading Frames/genetics , DNA, Satellite/genetics
8.
BMC Bioinformatics ; 25(1): 207, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844845

ABSTRACT

BACKGROUND: Gene families are groups of homologous genes that often have similar biological functions. These families are formed by gene duplication events throughout evolution, resulting in multiple copies of an ancestral gene. Over time, these copies can acquire mutations and structural variations, resulting in members that may vary in size, motif ordering and sequence. Multigene families have been described in a broad range of organisms, from single-celled bacteria to complex multicellular organisms, and have been linked to an array of phenomena, such as host-pathogen interactions, immune evasion and embryonic development. Despite the importance of gene families, few approaches have been developed for estimating and graphically visualizing their diversity patterns and expression profiles in genome-wide studies. RESULTS: Here, we introduce an R package named dgfr, which estimates and enables the visualization of sequence divergence within gene families, as well as the visualization of secondary data such as gene expression. The package takes as input a multi-fasta file containing the coding sequences (CDS) or amino acid sequences from a multigene family, performs a pairwise alignment among all sequences, and estimates their distance, which is subjected to dimension reduction, optimal cluster determination, and gene assignment to each cluster. The result is a dataset that allows for the visualization of sequence divergence and expression within the gene family, an approximation of the number of clusters present in the family. CONCLUSIONS: dgfr provides a way to estimate and study the diversity of gene families, as well as visualize the dispersion and secondary profile of the sequences. The dgfr package is available at https://github.com/lailaviana/dgfr under the GPL-3 license.


Subject(s)
Genetic Variation , Multigene Family , Software , Genetic Variation/genetics , Sequence Alignment/methods
9.
Microbiol Spectr ; 12(7): e0394723, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864670

ABSTRACT

Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea. IMPORTANCE: Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Cross Infection , Diarrhea , Genetic Variation , Multilocus Sequence Typing , Phylogeny , Humans , Clostridioides difficile/genetics , Clostridioides difficile/classification , Clostridioides difficile/isolation & purification , Diarrhea/microbiology , Diarrhea/epidemiology , Mexico/epidemiology , Child , Bacterial Toxins/genetics , Adult , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Bacterial Proteins/genetics , Enterotoxins/genetics , Male , Child, Preschool , Female , Prevalence , Adolescent , Whole Genome Sequencing , Phenotype , Genome, Bacterial/genetics , Infant , Middle Aged , Genomics
10.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913681

ABSTRACT

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Subject(s)
Evolution, Molecular , Molecular Dynamics Simulation , Protein Stability , Crystallography, X-Ray , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Kinetics , Enzyme Stability
11.
Microbiol Resour Announc ; 13(7): e0019224, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38842343

ABSTRACT

Uropathogenic Escherichia coli (UPEC) remains the main etiological agent of urinary tract infections affecting females and males. The draft genome sequence of three strains of UPEC isolated from senior citizens and pregnant women in the state of Puebla, Mexico, is reported here.

12.
Viruses ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38932149

ABSTRACT

DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.


Subject(s)
DNA, Ancient , Genome, Viral , Neanderthals , Animals , Neanderthals/genetics , Neanderthals/virology , DNA, Ancient/analysis , Evolution, Molecular , DNA, Viral/genetics , Sequence Analysis, DNA/methods , Humans , Phylogeny , DNA Viruses/genetics , DNA Viruses/classification , DNA Viruses/isolation & purification , Fossils/virology
13.
Methods Mol Biol ; 2802: 395-425, 2024.
Article in English | MEDLINE | ID: mdl-38819566

ABSTRACT

The field of viral genomic studies has experienced an unprecedented increase in data volume. New strains of known viruses are constantly being added to the GenBank database and so are completely new species with little or no resemblance to our databases of sequences. In addition to this, metagenomic techniques have the potential to further increase the number and rate of sequenced genomes. Besides, it is important to consider that viruses have a set of unique features that often break down molecular biology dogmas, e.g., the flux of information from RNA to DNA in retroviruses and the use of RNA molecules as genomes. As a result, extracting meaningful information from viral genomes remains a challenge and standard methods for comparing the unknown and our databases of characterized sequences may need adaptations. Thus, several bioinformatic approaches and tools have been created to address the challenge of analyzing viral data. This chapter offers descriptions and protocols of some of the most important bioinformatic techniques for comparative analysis of viruses. The authors also provide comments and discussion on how viruses' unique features can affect standard analyses and how to overcome some of the major sources of problems. Protocols and topics emphasize online tools (which are more accessible to users) and give the real experience of what most bioinformaticians do in day-by-day work with command-line pipelines. The topics discussed include (1) clustering related genomes, (2) whole genome multiple sequence alignments for small RNA viruses, (3) protein alignment for marker genes and species affiliation, (4) variant calling and annotation, and (5) virome analyses and pathogen identification.


Subject(s)
Computational Biology , Genome, Viral , Viruses , Computational Biology/methods , Viruses/genetics , Viruses/classification , Software , Databases, Genetic
14.
Wellcome Open Res ; 9: 98, 2024.
Article in English | MEDLINE | ID: mdl-38800517

ABSTRACT

We present a genome assembly from an individual male Tadarida brasiliensis (The Brazilian free-tailed bat; Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.28 Gb in span. The majority of the assembly is scaffolded into 25 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.

15.
Article in English | MEDLINE | ID: mdl-38729257

ABSTRACT

The time course for recovery after anesthesia is poorly described for tricaine methanesulfonate (MS-222). We suggest that the baroreflex and the heart rate variability (HRV) could be used to index the recovery of the autonomic modulation after anesthesia. We analyzed the recovery profile of behavioral and physiological parameters over time to analyze the progression of recovery after anesthesia of American bullfrogs with MS-222. Mean heart rate stabilized after 17 h, whereas the baroreflex efficiency index took 23 h and the baroreflex operating gain, 29 h. Mean arterial pressure recovered after 26 h. Power spectral density peaked at 23 h and again after 40 h. Baroreflex was a relevant component of the first phase of HRV, while autonomic modulation for resting may take longer than 40 h. We suggest that physiological recovery is a complex phenomenon with multiple progressive phases, and the baroreflex may be a useful tool to observe the first substantial recovery of post-instrumentation capacity for autonomic modulation.


Subject(s)
Aminobenzoates , Autonomic Nervous System , Baroreflex , Heart Rate , Rana catesbeiana , Animals , Baroreflex/physiology , Heart Rate/physiology , Autonomic Nervous System/physiology , Rana catesbeiana/physiology , Aminobenzoates/pharmacology , Anesthesia , Male , Blood Pressure/physiology , Anesthetics/pharmacology
16.
Biomedica ; 44(1): 54-66, 2024 03 31.
Article in English, Spanish | MEDLINE | ID: mdl-38648352

ABSTRACT

Introduction. During the development of the SARS-CoV-2 pandemic in Antioquia, we experienced epidemiological peaks related to the α, É£, ß, ƛ, and δ variants. δ had the highest incidence and prevalence. This lineage is of concern due to its clinical manifestations and epidemiological characteristics. A total of 253 δ sublineages have been reported in the PANGOLIN database. The sublineage identification through genomic analysis has made it possible to trace their evolution and propagation. Objective. To characterize the genetic diversity of the different SARS-CoV-2 δ sublineages in Antioquia and to describe its prevalence. Materials and methods. We collected sociodemographic information from 2,675 samples, and obtained 1,115 genomes from the GISAID database between July 12th, 2021, and January 18th, 2022. From the analyzed genomes, 515 were selected because of their high coverage values (>90%) to perform phylogenetic analysis and to infer allele frequencies of mutations of interest. Results. We characterized 24 sublineages. The most prevalent was AY.25. Mutations of interest as L452R, P681R, and P681H were identified in this sublineage, comprising a frequency close to 0.99. Conclusions. This study identified that the AY.25 sublineage has a transmission advantage compared to the other δ sublineages. This attribute may be related to the presence of the L452R and P681R mutations associated in other studies with higher evasion of the immune system and less efficacy of drugs against SARS-CoV-2.


Introducción. Durante el desarrollo de la pandemia por SARS-CoV-2 en Antioquia se presentaron picos epidemiológicos relacionados con las variantes α, É£, ß, ƛ y δ, donde δ tuvo la mayor incidencia y prevalencia. Este linaje se considera una variante de preocupación dadas las manifestaciones clínicas que desencadena y sus características epidemiológicas. Se han informado 253 sublinajes δ en la base de datos PANGOLIN. La identificación de estos sublinajes mediante análisis genómico ha permitido rastrear su evolución y propagación. Objetivo. Caracterizar la diversidad genética de los diferentes sublinajes δ de SARSCoV-2 en Antioquia y determinar su prevalencia. Materiales y métodos. Se recopiló información sociodemográfica de 2.675 muestras y de 1.115 genomas del repositorio GISAID entre el 12 de julio de 2021 y el 18 de enero de 2022. Se seleccionaron 501 por su alto porcentaje de cobertura (>90 %) para realizar análisis filogenéticos e inferencia de frecuencias alélicas de mutaciones de interés. Resultados. Se caracterizaron 24 sublinajes donde el más prevalente fue AY.25. En este sublinaje se identificaron mutaciones de interés como L452R, P681R y P681H, que comprendían una frecuencia cercana a 0,99. Conclusiones. Este estudio permitió identificar que el sublinaje AY.25 tiene una ventaja de transmisión en comparación con los otros sublinajes δ. Esto puede estar relacionado con la presencia de las mutaciones L452R y P681R que en otros estudios se han visto asociadas con una mayor transmisibilidad, evasión del sistema inmunitario y menor eficacia de los medicamentos contra SARS-CoV-2.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2 , Colombia/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Male , Female , Mutation , Adult , Middle Aged , Pandemics , Young Adult , Aged , Adolescent , Gene Frequency , Genetic Variation
17.
Microbiol Spectr ; 12(6): e0171423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38629835

ABSTRACT

In this study, the genetic differences and clinical impact of the carbapenemase-encoding genes among the community and healthcare-acquired infections were assessed. This retrospective, multicenter cohort study was conducted in Colombia and included patients infected with carbapenem-resistant Gram-negative rods between 2017 and 2021. Carbapenem resistance was identified by Vitek, and carbapenemase-encoding genes were identified by whole-genome sequencing (WGS) to classify the alleles and sequence types (STs). Descriptive statistics were used to determine the association of any pathogen or gene with clinical outcomes. A total of 248 patients were included, of which only 0.8% (2/248) had community-acquired infections. Regarding the identified bacteria, the most prevalent pathogens were Pseudomonas aeruginosa and Klebsiella pneumoniae. In the WGS analysis, 228 isolates passed all the quality criteria and were analyzed. The principal carbapenemase-encoding gene was blaKPC, specifically blaKPC-2 [38.6% (88/228)] and blaKPC-3 [36.4% (83/228)]. These were frequently detected in co-concurrence with blaVIM-2 and blaNDM-1 in healthcare-acquired infections. Notably, the only identified allele among community-acquired infections was blaKPC-3 [50.0% (1/2)]. In reference to the STs, 78 were identified, of which Pseudomonas aeruginosa ST111 was mainly related to blaKPC-3. Klebsiella pneumoniae ST512, ST258, ST14, and ST1082 were exclusively associated with blaKPC-3. Finally, no particular carbapenemase-encoding gene was associated with worse clinical outcomes. The most identified genes in carbapenemase-producing Gram-negative rods were blaKPC-2 and blaKPC-3, both related to gene co-occurrence and diverse STs in the healthcare environment. Patients had several systemic complications and poor clinical outcomes that were not associated with a particular gene.IMPORTANCEAntimicrobial resistance is a pandemic and a worldwide public health problem, especially carbapenem resistance in low- and middle-income countries. Limited data regarding the molecular characteristics and clinical outcomes of patients infected with these bacteria are available. Thus, our study described the carbapenemase-encoding genes among community- and healthcare-acquired infections. Notably, the co-occurrence of carbapenemase-encoding genes was frequently identified. We also found 78 distinct sequence types, of which two were novel Pseudomonas aeruginosa, which could represent challenges in treating these infections. Our study shows that in low and middle-income countries, such as Colombia, the burden of carbapenem resistance in Gram-negative rods is a concern for public health, and regardless of the allele, these infections are associated with poor clinical outcomes. Thus, studies assessing local epidemiology, prevention strategies (including trials), and underpinning genetic mechanisms are urgently needed, especially in low and middle-income countries.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Pseudomonas aeruginosa , beta-Lactamases , Humans , Colombia/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Retrospective Studies , Male , Female , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Middle Aged , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/classification , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Adult , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Aged , Cross Infection/microbiology , Cross Infection/epidemiology , Carbapenems/pharmacology , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Whole Genome Sequencing , Adolescent , Young Adult
18.
Polymers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611183

ABSTRACT

The aim of this work is to analyze the effect of water absorption on the mechanical properties and damage mechanisms of polyester/glass fiber/jute fiber hybrid composites obtained using the compression molding and vacuum-assisted resin transfer molding (VARTM) techniques with different stacking sequences. For this purpose, the mechanical behavior under tensile stress of the samples was evaluated before and after hygrothermal aging at different temperatures: TA, 50 °C, and 70 °C for a period of 696 h. The damage mechanism after the mechanical tests was evaluated using SEM analysis. The results showed a tendency for the mechanical properties of the composites to decrease with exposure to an aqueous ambient, regardless of the molding technique used to conform the composites. It was also observed that the stacking sequence had no significant influence on the dry composites. However, exposure to the aqueous ambient led to a reduction in mechanical properties, both for the molding technique and the stacking sequence. Damage such as delamination, fiber pull-out, fiber/matrix detachment, voids, and matrix removal were observed in the composites in the SEM analyses.

19.
Elife ; 122024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634460

ABSTRACT

Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.


Subject(s)
Drosophila , Neurons , Animals , Grooming/physiology , Afferent Pathways , Neurons/physiology , Brain , Drosophila melanogaster/physiology
20.
Braz J Microbiol ; 55(2): 1381-1391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546951

ABSTRACT

Campylobacteriosis is currently recognized as one of the major causes of foodborne bacterial diseases worldwide. In Brazil, there is insufficient data to estimate the impact of Campylobacter in public health. The aim of this present study was to characterize a C. jejuni CJ-HBSJRP strain isolated from a hospitalized patient in Brazil by its ability to invade human Caco-2 epithelial cells, to survive in U937 human macrophages, and to assess its phenotypic antimicrobial resistance profile. In addition, prophages, virulence and antimicrobial resistance genes were search using whole-genome sequencing data. The genetic relatedness was evaluated by MLST and cgMLST analysis by comparison with 29 other C. jejuni genomes isolated from several countries. The CJ-HBSJRP strain showed an invasion percentage of 50% in Caco-2 polarized cells, 37.5% of survivability in U937 cells and was phenotypically resistant to ampicillin, ciprofloxacin and nalidixic acid. A total of 94 virulence genes related to adherence, biofilm, chemotaxis, immune modulation, invasion process, metabolism, motility and toxin were detected. The resistance genes blaOXA-605 (blaOXA-61), cmeB and mutations in the QRDR region of gyrA were also found and none prophages were detected. The MLST analysis showed 23 different STs among the strains studied. Regarding cgMLST analysis, the CJ-HBSJRP strain was genetically distinct and did not group closely to any other isolate. The results obtained reinforce the pathogenic potential of the CJHBSJRP strain and highlighted the need for more careful attention to Campylobacter spp. infections in Brazil since this pathogen has been the most commonly reported zoonosis in several countries worldwide.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Virulence Factors , Humans , Brazil , Campylobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification , Caco-2 Cells , Virulence Factors/genetics , Genome, Bacterial , Drug Resistance, Bacterial , Genetic Variation , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL