Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
Add more filters











Publication year range
1.
J Agric Food Chem ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365739

ABSTRACT

Conogethes punctiferalis, a polyphagous pest in Asia, infests various crops, causing severe economic losses. Its larvae feed inside plants, making management challenging, with conventional insecticides. This study examines sublethal bifenthrin effects on the reproductive capabilities of adult females. Findings show sublethal bifenthrin concentrations (LC1, LC10, LC20, and LC30) significantly reduce sex pheromone production and mating success in a dose-dependent manner. Furthermore, these sublethal exposures influence the expression of pheromone biosynthesis activating neuropeptide and key juvenile hormone signaling genes, including methoprene-tolerant and Krüppel-homologue 1. Enzyme activity assays and metabolite measurements indicated that sublethal bifenthrin exposure decreases trehalose and pyruvic acid levels, suppressing the enzyme activities required for sex pheromone biosynthesis. Additionally, bifenthrin exposure delays ovarian development, reduces ovary size, and decreases egg production and hatchability. These results suggest bifenthrin's potential in attract-and-kill strategies by disrupting essential pathways for pest control, offering insights for improved insecticide use and innovative pest management for C. punctiferalis.

2.
Adv Sci (Weinh) ; : e2407353, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377305

ABSTRACT

Sexual dimorphism is a crucial aspect of mating and reproduction in many animals, yet the molecular mechanisms remain unclear. In Bactrocera dorsalis, sex pheromones trimethylpyrazine (TMP) and tetramethylpyrazine (TTMP) are specifically synthesized by Bacillus strains in the male rectum. In the female rectum, Bacillus strains are found, but TMP and TTMP are not, indicating sexually dimorphic differences in sex pheromone synthesis. Our anatomical observations and precursor measurements revealed significant differences in rectal structure and ammonium levels between sexes.  In vitro and in vivo experiments reveal that ammonium is vital for sex pheromone synthesis in rectal Bacillus strains. Comparative transcriptome analysis identified ammonium-producing genes (carboxypeptidase B and peptide transporter) in the protein digestion pathway that show much higher expression in the male rectum than in the female rectum. Knocking down the expression of either carboxypeptidase B (or inhibiting enzyme activity) or peptide transporter decreases rectal ammonium levels significantly, resulting in the failure of sex pheromone synthesis in the male rectum. This study provides insights into the presence of sexual dimorphism in internal organs and their functionalities in male-specific sex pheromone synthesis and has significant implications for understanding the molecular mechanisms underlying sex pheromone synthesis by symbionts in insects.

3.
Insects ; 15(9)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39336605

ABSTRACT

The rice leaf-roller Cnaphalocrocis medinalis is an important migratory pest of rice. We conducted a study to determine the physiological status of adults trapped by a sex pheromone and floral odor. In the immigrant group, the number of males trapped by the floral odor was greater than the number caught by sex pheromone trapping. The volume of testes was similar in the above two trapping methods but was smaller than in the sweep net method. The ovary developmental grade, mating rate, and number of matings of females caught in floral odor trap were higher than in those caught in the sweep net. In the local breeding group, the number of males trapped by sex pheromones was greater than the number trapped by the floral odor. The volume of testes was smaller in the floral odor trap compared to the pheromone trap group, with the largest in the sweep net group. The ovarian developmental grade, mating rate, and number of matings of females were significantly higher in the floral odor trap group than in the sweep net group. In the emigrant group, the adult olfactory response to the sex pheromone and floral odor was low. The volume of testes was larger in the sweep net group compared to the moths caught by floral odor trapping. The number of eggs laid by female immigrants trapped by the floral odor and sweep net was similar, while the number in the local breeding group was greater in moths caught with the sweep net in comparison with those caught by the floral odor trap. The difference in egg hatchability between the two trapping methods in both immigrants and local breedings was not significant.

4.
Insects ; 15(9)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39336627

ABSTRACT

The invasive mealybug Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) has rapidly spread in the Mediterranean basin since its detection in 2009 in the Valencia Community in eastern Spain. The use of sticky traps baited with its sex pheromone, (4,5,5-trimethyl-3-methylenecyclopent-1-en-1-yl)methyl acetate, has allowed to determine the geographical distribution of D. aberiae by means of the surveillance network described in the present work. The population monitoring of the pest over a five-year period (2019-2023) has revealed an increase from 31% to 70% of the affected citrus-growing area. The monitoring network has also allowed a better understanding of the pests' biological cycle throughout the year. The populations start growing from March to June and reach their maximum in July-August. During autumn, there is a gradual decline in the population. Although the highest annual populations were detected in 2022 and 2023, the greatest crop losses were recorded in 2020 and 2021, with mean values near 18%. Data suggest that the damage responsible for fruit deformation, and thus the economic losses, are related to the population levels in spring (April-May) rather than those in summer (July-August). The findings of this study can be valuable for future research and development of effective pest control strategies.

5.
Molecules ; 29(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202945

ABSTRACT

The tea tussock moth is a pest that damages tea leaves, affecting the quality and yield of tea and causing huge economic losses. The efficient asymmetric total synthesis of the sex pheromone of the tea tussock moth was achieved using commercially available starting materials with a 25% overall yield in 11 steps. Moreover, the chiral moiety was introduced by Evans' template and the key C-C bond construction was accomplished through Julia-Kocienski olefination coupling. The synthetic sex pheromone of the tea tussock moth will facilitate the subsequent assessment and implementation of pheromones as environmentally friendly tools for pest management.


Subject(s)
Moths , Sex Attractants , Sex Attractants/chemical synthesis , Sex Attractants/chemistry , Animals , Female , Molecular Structure , Camellia sinensis/chemistry , Tea/chemistry
6.
J Agric Food Chem ; 72(34): 18864-18871, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39153187

ABSTRACT

Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.


Subject(s)
Insect Proteins , Phylogeny , Receptors, Odorant , Sex Attractants , Sex Attractants/chemistry , Sex Attractants/metabolism , Animals , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Male , Female , Molecular Docking Simulation , Fatty Alcohols/metabolism , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Aldehydes
7.
J Agric Food Chem ; 72(33): 18353-18364, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165161

ABSTRACT

Hyphantria cunea (Lepidoptera: Erebidae) is difficult and costly to control as a quarantine pest found globally. Sex pheromone trapping is an effective measure for its population monitoring and control; however, the peripheral neural mechanism of sex pheromone recognition in H. cunea remains unclear. An electrophysiological analysis showed that both male and female moths of H. cunea responded to four components of sex pheromones and the responses of male moths were stronger than those of the female moths. We identified three types of trichoid sensilla (ST) responsive to sex pheromones using the single sensillum recording technique. Each type was involved in recognizing 9R, 10S-epoxy-1, Z3, Z6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy). Four peripheral neurons involved in the olfactory encoding of sex pheromones were identified. Four candidate pheromone receptor (PR) genes, HcunPR1a, HcunPR1b, HcunPR3, and HcunPR4, were screened by transcriptome sequencing. All of them were highly expressed in the antennae of males, except for HcunPR4, which was highly expressed in the antennae of females. Functional identification showed that HcunPR1a responded to sex pheromone. Other HcunPRs were not functionally identified. In summary, neurons involved in sex pheromone recognition of H. cunea were located in the ST, and HcunPR1a recognized secondary pheromone components 1, Z3, Z6-9S, 10R-epoxy-21Hy. Interestingly, PRs that recognize the main components of the sex pheromone may be located in an unknown branch of the olfactory receptor and merit further study. Our findings provide a better understanding of the peripheral neural coding mechanism of type II sex pheromones, and HcunPR1a may provide a target for the subsequent development of highly effective and specific biopesticides for H. cunea.


Subject(s)
Insect Proteins , Moths , Receptors, Pheromone , Sex Attractants , Animals , Sex Attractants/metabolism , Moths/physiology , Moths/genetics , Moths/metabolism , Male , Female , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Neurons/metabolism
8.
J Chem Ecol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951422

ABSTRACT

Mating disruption of a flighted spongy moth, Lymantria dispar japonica (Motchulsky)(Lepidoptera: Lymantridae), with a synthetic version of its sex pheromone, (+)-disparlure ([7R,8S] -cis-7,8-epoxy-2- methyloctadecane), was tested in the forests in Japan. Pheromone trap catches and the percentage mating of tethered females were measured in the pheromone-treated and untreated control forests. The attraction of male moths to pheromone traps placed at a height of 1.5 m was significantly disrupted when the pheromone dispensers were placed at 1.5 m height, but many moths were captured in control plots. Mating of tethered females placed at 1.5 m was inhibited entirely, while 44% of females were mated in an untreated control forest. We report the first trial of mating disruption against a flighted spongy moth, and these results suggest that mating disruption with the synthetic sex pheromone appears promising for reducing damage caused by L. dispar japonica.

9.
Proc Natl Acad Sci U S A ; 121(30): e2401926121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018190

ABSTRACT

Sex pheromones play a crucial role in mate location and reproductive success. Insects face challenges in finding mates in low-density environments. The population dynamics of locusts vary greatly, ranging from solitary individuals to high-density swarms, leading to multiple-trait divergence between solitary and gregarious phases. However, differences in sexual communication between solitary and gregarious locusts have not been sufficiently explored. Herein, we found that solitary locusts but not gregarious ones heavily rely on a single compound, dibutyl phthalate (DBP), for sexual communication. DBP is abundantly released by solitary female locusts and elicits strong attraction of male solitary and gregarious locusts. Solitary adult males display much higher electrophysiological responses to DBP than adult females. Additionally, LmigOr13 was identified as the DBP-specific odorant receptor expressed in neurons housed in basiconic sensilla. Male LmigOr13-/- mutants generated by CRISPR/Cas9 have low electrophysiological responses and behavioral attraction to DBP in both laboratory and field cage experiments. Notably, the attractiveness of DBP to male locusts becomes more evident at lower population densities imposed by controlling the cage size. This finding sheds light on the utilization of a sex pheromone to promote reproductive success in extremely low-density conditions and provides important insights into alternative approaches for population monitoring of locusts.


Subject(s)
Dibutyl Phthalate , Sexual Behavior, Animal , Animals , Female , Male , Sexual Behavior, Animal/physiology , Sex Attractants/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Animal Communication
10.
Insects ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921172

ABSTRACT

Insect pheromones have been intensively studied with respect to their role in insect communication. However, scarce knowledge is available on the impact of pheromones on plant responses, and how these in turn affect herbivorous insects. A previous study showed that exposure of pine (Pinus sylvestris) to the sex pheromones of the pine sawfly Diprion pini results in enhanced defenses against the eggs of this sawfly; the egg survival rate on pheromone-exposed pine needles was lower than that on unexposed pine. The long-lasting common evolutionary history of D. pini and P. sylvestris suggests that D. pini has developed counter-adaptations to these pine responses. Here, we investigated by behavioral assays how D. pini copes with the defenses of pheromone-exposed pine. The sawfly females did not discriminate between the odor of pheromone-exposed and unexposed pine. However, when they had the chance to contact the trees, more unexposed than pheromone-exposed trees received eggs. The exposure of pine to the pheromones did not affect the performance of larvae and their pupation success. Our findings indicate that the effects that responses of pine to D. pini sex pheromones exert on the sawfly eggs and sawfly oviposition behavior do not extend to effects on the larvae.

11.
J Chem Ecol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842637

ABSTRACT

Cerambycid species of the Spondylidinae subfamily are distributed worldwide and are known for being prolific invaders that infest conifers. In New Zealand, Arhopalus ferus (Mulsant), the burnt pine longhorn beetle, is well-established and requires monitoring at high-risk sites such as ports, airports, and sawmills as part of the requirements to meet pine log export standards set by the New Zealand Ministry of Primary Industries (MPI). Currently, its surveillance relies on traps baited with host volatiles (i.e., ethanol and α-pinene). We used volatile collections from adult beetles, electroantennograms, and field trapping bioassays to identify the pheromones emitted by the burnt pine longhorn beetle A. ferus and their effects on its behaviour. We show that A. ferus males emit mainly (E)-fuscumol and geranylacetone, as well as the minor components, α-terpinene and p-mentha-1,3,8-triene, and that all four compounds elicit a dose-dependent response in antennae of both sexes. Traps baited with the binary combination of geranylacetone plus fuscumol captured significantly more female A. ferus than did unbaited traps in two of three field experiments. α-Terpinene did not affect A. ferus trap catches and effects of p-mentha-1,3,8-triene on trap catch were not determined. Our findings provide further evidence of the use of fuscumol and geranylacetone as aggregation-sex pheromones by longhorn beetles in the Spondylidinae subfamily, and suggest that their deployment in survey traps may improve the efficacy of A. ferus monitoring in New Zealand and elsewhere.

12.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38913610

ABSTRACT

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.


Subject(s)
Pheromones , Tephritidae , Animals , Male , Female , Tephritidae/genetics , Tephritidae/physiology , Tephritidae/metabolism , Sympatry , Gas Chromatography-Mass Spectrometry , Species Specificity , Reproductive Isolation , Sexual Behavior, Animal , Solid Phase Microextraction
13.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930983

ABSTRACT

The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one ((S)-2), and their enantiomers has been developed. Key steps in the synthesis include the use of Evans' chiral auxiliaries, Grignard cross-coupling reactions, hydroboration-oxidation, and Wacker oxidation. The synthesized sex pheromone components hold potential value for studies on communication mechanisms, species identification, and ecological management.


Subject(s)
Moths , Sex Attractants , Sex Attractants/chemistry , Sex Attractants/chemical synthesis , Animals , Stereoisomerism , Female , Molecular Structure
14.
Cell Mol Life Sci ; 81(1): 259, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878072

ABSTRACT

Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.


Subject(s)
Moths , Receptors, Pheromone , Sex Attractants , Animals , Sex Attractants/metabolism , Sex Attractants/chemistry , Moths/metabolism , Moths/physiology , Receptors, Pheromone/metabolism , Receptors, Pheromone/genetics , Male , Insect Proteins/metabolism , Insect Proteins/chemistry , Female , Molecular Docking Simulation , Amino Acid Sequence , Phylogeny , Molecular Dynamics Simulation , Sexual Behavior, Animal/physiology
15.
J Chem Ecol ; 50(7-8): 321-329, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38767818

ABSTRACT

Chemical, electrophysiological, and field trapping experiments were carried out to identify the female-produced sex pheromone of the asparagus moth, Parahypopta caestrum, a very serious pests of asparagus cultivations in southern Europe. Gas chromatography coupled with mass spectrometry and electroantennogram detection (GC-MS-EAD) analysis of hexane and solid-phase microextraction (SPME) extracts of sex pheromone glands of calling females consistently detected four compounds eliciting EAG responses in male moth antennae. According to their GC retention times, mass spectra, and comparative EAG analyses with reference standards, these EAD-active compounds were identified as (Z)-9-tetradecenol (Z9-14:OH), (Z)-5-tetradecenyl acetate (Z5-14:Ac), (Z)-7-tetradecenyl acetate (Z7-14:Ac), and (Z)-9-tetradecenyl acetate (Z9-14:Ac), respectively. In the SPME extracts from the head-space of individual abdominal tips, Z9-14:Ac, Z5-14:Ac, Z7-14:Ac, and Z9:14 OH were detected in the ratio of 82:9:5:4. In EAG dose-response experiments, Z9-14:Ac was the strongest antennal stimulant at different doses tested. In field trapping experiments, Z9-14:Ac, Z7-14:Ac, and Z5-14:Ac proven to be essential for male attraction and a their 85:5:10 blend loaded onto green rubber septum dispensers was significantly more effective than single-, two-, and any other three-component blend of these compounds. The addition of Z9-14:OH to the optimal blend resulted in a significant reduction of male catches. The attractive blend here identified allowed for an effective and accurate monitoring of P. caestrum flight activity in southern Italy.


Subject(s)
Gas Chromatography-Mass Spectrometry , Moths , Sex Attractants , Solid Phase Microextraction , Animals , Sex Attractants/analysis , Sex Attractants/chemistry , Sex Attractants/pharmacology , Female , Male , Moths/physiology , Arthropod Antennae/physiology , Sexual Behavior, Animal/drug effects
16.
J Chem Ecol ; 50(7-8): 338-350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739335

ABSTRACT

The longhorn beetle Graphisurus fasciatus (Degeer) ranges from southeastern Canada to Florida and west to Texas, and has frequently been caught during field trials testing attraction of other cerambycid species to their synthesized pheromones. Collections of headspace volatiles from live beetles revealed that males but not females produce a polyketide compound identified as (4R,6S,7E,9E)-4,6,8-trimethylundeca-7,9-dien-3-one ([4R,6S,7E,9E]-graphisurone). Field trials verified that beetles of both sexes were attracted to the synthesized compound, indicating that it is an aggregation-sex pheromone. This structure represents a new structural motif among cerambycid pheromones, and a new natural product. While this study was in progress, the same compound was isolated from males of the South American cerambycid Eutrypanus dorsalis (Germar), in the same subfamily (Lamiinae) and tribe (Acanthocinini) as G. fasciatus. Field trials in Brazil confirmed that (4R,6S,7E,9E)-graphisurone is also an aggregation-sex pheromone for E. dorsalis, and a possible pheromone for two additional sympatric lamiine species, Hylettus seniculus (Germar) (Acanthocinini) and Oreodera quinquetuberculata (Drapiez) (tribe Acrocinini). These results indicate that graphisurone may be shared among a number of related species, as has been found with many components of cerambycid pheromones.


Subject(s)
Coleoptera , Sex Attractants , Animals , Male , Coleoptera/chemistry , Coleoptera/physiology , Sex Attractants/chemistry , Sex Attractants/pharmacology , Sex Attractants/metabolism , Female , Polyketides/metabolism , Polyketides/chemistry , Polyketides/pharmacology , South America , North America
17.
Insect Sci ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769890

ABSTRACT

Given the limited availability of resources in nature, sexual attractiveness may trade off with immunocompetence, as the immunocompetence handicap hypothesis (ICHH) posits. In invertebrates, a direct link between trade-offs through hormonal/molecular effectors in sexual signals and immunity has not been found so far. Here, we assessed how variation in sexual signals affected parasite infection in two sex pheromone selected lines of the moth Chloridea virescens: an attractive line with a low ratio of 16:Ald/Z11-16:Ald and an unattractive line with a high ratio. When infecting these lines with an apicomplexan parasite, we found that the attractive Low line was significantly more susceptible to the parasite infection than the unattractive High line. Since the ratio difference between these two lines is determined by a delta-11-desturase, we hypothesized that this desaturase may have a dual role, i.e., in the quality of the sexual signal as well as an involvement in immune response, comparable to testosterone in vertebrates. However, when we used CRISPR/cas9 to knockout delta-11-desturase in the attractive Low line, we found that the pheromonal phenotype did change to that of the High line, but the infection susceptibility did not. Notably, when checking the genomic location of delta-11-desaturase in the C. virescens, we found that mucin is adjacent to delta-11-desaturase. When comparing the mucin sequences in both lines, we found four nonsynonymous SNPs in the coding sequence, as well as intronic variation between the two lines. These differences suggest that genetic hitchhiking may explain the variation in susceptibility to parasitic infection.

18.
Molecules ; 29(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38731627

ABSTRACT

A concise synthesis of the sex pheromones of elm spanworm as well as painted apple moth has been achieved. The key steps were the alkylation of acetylide ion, Sharpless asymmetric epoxidation and Brown's P2-Ni reduction. This approach provided the sex pheromone of the elm spanworm (1) in 31% total yield and those of the painted apple moth (2, 3) in 26% and 32% total yields. The ee values of three final products were up to 99%. The synthesized pheromones hold promising potential for use in the management and control of these pests.


Subject(s)
Epoxy Compounds , Moths , Sex Attractants , Animals , Sex Attractants/chemical synthesis , Sex Attractants/chemistry , Epoxy Compounds/chemistry , Molecular Structure
19.
PNAS Nexus ; 3(4): pgae162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38689705

ABSTRACT

Many animals use multicomponent sex pheromones for mating, but the specific function and neural processing of each pheromone component remain unclear. The cockroach Periplaneta americana is a model for studying sex pheromone communication, and an adult female emits major and minor sex pheromone components, periplanone-B and -A (PB and PA), respectively. Attraction and courtship behaviors (wing-raising and abdominal extension) are strongly expressed when adult males are exposed to PB but weakly expressed when they are exposed to PA. When major PB is presented together with minor PA, behaviors elicited by PB were impaired, indicating that PA can both promote and suppress courtship behaviors depending on the pheromonal context. In this study, we identified the receptor genes for PA and PB and investigated the effects of knocking down each receptor gene on the activities of PA- and PB-responsive sensory neurons (PA- and PB-SNs), and their postsynaptic interneurons, and as well as effects on courtship behaviors in males. We found that PB strongly and PA weakly activate PB-SNs and their postsynaptic neurons, and activation of the PB-processing pathway is critical for the expression of courtship behaviors. PA also activates PA-SNs and the PA-processing pathway. When PA and PB are simultaneously presented, the PB-processing pathway undergoes inhibitory control by the PA-processing pathway, which weakens the expression of courtship behaviors. Our data indicate that physiological interactions between the PA- and PB-processing pathways positively and negatively mediate the attraction and courtship behaviors elicited by sex pheromones.

20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732112

ABSTRACT

The paulownia bagworm, Clania variegata Snell, is an economically important pest of agriculture and forests. The sex pheromone of this pest and its stereoisomers were synthesized, and two of the stereoisomers were prepared for the first time. Our strategy was efficient and mainly included the ring-opening reaction of (S)-2-methyloxirane, the coupling of chiral sulfonate, the oxidative cleavage of olefin, and Yamaguchi esterification. Moreover, the overall yields of our synthesis were 23-29%, with eight steps in the longest route.


Subject(s)
Sex Attractants , Sex Attractants/chemical synthesis , Sex Attractants/chemistry , Stereoisomerism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL