Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732927

ABSTRACT

Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.

2.
Chemphyschem ; 17(4): 463-7, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26670701

ABSTRACT

We report the unprecedented observation of plasmon coupling between silver nanowires, showing how the surface-enhanced Raman scattering depends upon this interaction and how the spectrum can be shaped by the hot spot. Such observations were accomplished by Raman spectroscopy mapping of silver nanowires modified with rhodamine. The local spectra on the hot spots were measured by darkfield hyperspectral microscopy, a powerful but uncommonly used technique that is capable of determining the location, structure, and spectra of the hot spots. The result obtained by the simulation of two parallel nanowires based on the discrete dipole approximation (DDA) method was in excellent agreement with the results obtained experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL