Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.517
Filter
1.
Seizure ; 121: 211-216, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39236599

ABSTRACT

Sleep deprivation has been studied as a method to induce sleep before EEG testing to improve the diagnosis of epilepsy. However, the effectiveness of sleep deprivation in diagnosing epilepsy through EEG in humans showed conflicting findings in previous studies. This meta-analysis aimed to provide statistical evidence for the diagnostic value of sleep-deprived EEG in epilepsy. A systematic search of the Web of Science and PubMed databases identified 12 relevant studies from May 1997 to the present. These studies were included to examine the diagnostic value of sleep-deprived EEG in epilepsy and its associated clinical variables, such as patient age, duration of sleep deprivation, and EEG recording duration. The results of the random effects model did not show a significant overall diagnostic effect for sleep-deprived EEG in epilepsy, but revealed high heterogeneity among the studies. Notably, this heterogeneity was not accounted for by the clinical variables analyzed. Upon excluding outliers, a trend suggesting a modest diagnostic value of sleep-deprived EEG emerged. The high heterogeneity among studies indicates the need for a standardized protocol for sleep deprivation in future studies. Overall, while sleep deprivation may have a small positive effect on EEG-based epilepsy diagnosis, further research is needed to better understand its impact and optimize its use in clinical practice.

2.
Hum Brain Mapp ; 45(13): e70013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39225144

ABSTRACT

Insufficient sleep compromises cognitive performance, diminishes vigilance, and disrupts daily functioning in hundreds of millions of people worldwide. Despite extensive research revealing significant variability in vigilance vulnerability to sleep deprivation, the underlying mechanisms of these individual differences remain elusive. Locus coeruleus (LC) plays a crucial role in the regulation of sleep-wake cycles and has emerged as a potential marker for vigilance vulnerability to sleep deprivation. In this study, we investigate whether LC microstructural integrity, assessed by fractional anisotropy (FA) through diffusion tensor imaging (DTI) at baseline before sleep deprivation, can predict impaired psychomotor vigilance test (PVT) performance during sleep deprivation in a cohort of 60 healthy individuals subjected to a rigorously controlled in-laboratory sleep study. The findings indicate that individuals with high LC FA experience less vigilance impairment from sleep deprivation compared with those with low LC FA. LC FA accounts for 10.8% of the variance in sleep-deprived PVT lapses. Importantly, the relationship between LC FA and impaired PVT performance during sleep deprivation is anatomically specific, suggesting that LC microstructural integrity may serve as a biomarker for vigilance vulnerability to sleep loss.


Subject(s)
Diffusion Tensor Imaging , Locus Coeruleus , Psychomotor Performance , Sleep Deprivation , Humans , Sleep Deprivation/diagnostic imaging , Sleep Deprivation/physiopathology , Sleep Deprivation/pathology , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Male , Female , Adult , Young Adult , Psychomotor Performance/physiology , Arousal/physiology , Anisotropy , Neuropsychological Tests
3.
Sleep Sci ; 17(3): e272-e280, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39268336

ABSTRACT

Objective To evaluate which condition of sleep debt has a greater negative impact on insulin resistance: sleep deprivation for 24 hours or 4 hours of sleep restriction for 4 nights. Materials and Methods In total, 28 healthy male subjects aged 18 to 40 years were recruited and randomly allocated to two groups: sleep deprivation (SD) and sleep restriction (SR). Each group underwent two conditions: regular sleep (11 pm to 7 am ) and total sleep deprivation for 24 hours (SD); regular sleep (11 pm to 7 am ) and 4 nights of sleep restriction (SR) (1 am to 5 am ). The oral glucose tolerance test (OGTT) was performed, and baseline glucose, insulin, free fatty acids (FFAs), and cortisol were measured. In addition, the area under the curve (AUC) for glucose and insulin, the homeostasis model assessment of insulin resistance (HOMA-IR), and the Matsuda Index (Insulin Sensitivity Index, ISI) were calculated. Results Glucose and insulin had a similar pattern between groups, except at the baseline, when insulin was higher in the sleep debt condition of the SR when compared with the SD ( p < 0.01). In the comparison between regular sleep and sleep debt, the SD had a higher insulin AUC ( p < 0.01) and FFAs ( p = 0.03) after sleep deprivation, and insulin and the insulin AUC increased ( p < 0.01 for both), while the ISI decreased ( p = 0.02) after sleep restriction in the SR. In baseline parameters covariate by the condition of regular sleep, insulin ( p = 0.02) and the HOMA-IR ( p < 0.01) were higher, and cortisol ( p = 0.04) was lower after sleep restriction when compared with sleep deprivation. Conclusion Sleep restriction for 4 consecutive nights is more detrimental to energy metabolism because of the higher insulin values and insulin resistance compared with an acute period of sleep deprivation of 24 hours.

4.
Adv Sci (Weinh) ; : e2402393, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229959

ABSTRACT

Sleep deprivation (SD) is observed to adversely affect the reproductive health of women. However, its precise physiological mechanisms remain largely elusive. In this study, using a mouse model of SD, it is demonstrated that SD induces the depletion of ovarian primordial follicles, a phenomenon not attributed to immune-mediated attacks or sympathetic nervous system activation. Rather, the excessive secretion of stress hormones, namely norepinephrine (NE) and epinephrine (E), by overactive adrenal glands, has emerged as a key mediator. The communication pathway mediated by the KIT ligand (KITL)-KIT between granulosa cells and oocytes plays a pivotal role in primordial follicle activation. SD heightened the levels of NE/E that stimulates the activation of the KITL-KIT/PI3K and mTOR signaling cascade in an ß2 adrenergic receptor (ADRB2)-dependent manner, thereby promoting primordial follicle activation and consequent primordial follicle loss in vivo. In vitro experiments further corroborate these observations, revealing that ADRB2 upregulates KITL expression in granulosa cells via the activation of the downstream cAMP/PKA pathway. Together, these results reveal the significant involvement of ADRB2 signaling in the depletion of ovarian primordial follicles under sleep-deprived conditions. Additionally, ADRB2 antagonists are proposed for the treatment or prevention of excessive activation of primordial follicles induced by SD.

5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 471-481, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223011

ABSTRACT

Objective To investigate the effects of Schisandrae Chinensis Fructus lignans on the alertness of the rats with sleep deprived by treadmill exercise and the underlying neurobiological mechanism. Methods According to the random number table method,SD male rats were assigned into control,sleep deprivation,low-,medium-,and high-dose Schisandrae Chinensis Fructus lignans,and atomoxetine hydrochloride groups,with 8 rats in each group.The rats in other groups except the control group were subjected to sleep deprivation by treadmill exercise for 3 d.During the deprivation period,each administration group was administrated with the corresponding drug by gavage,and a 5-9 hole tester was used to test the alertness performance of rats in each group. Furthermore,other SD male rats were selected and randomized into control,sleep deprivation,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride groups,with 10 rats in each group.The rats were modeled with the sleep deprivation method the same as that above and administrated with corresponding agents.ELISA was employed to measure the serum level of orexin A in each group of rats.The protein levels of c-Fos,orexin receptor 1,and orexin receptor 2 in the prefrontal cortex of rats in each group were observed by immunofluorescence and Western blotting. Results Compared with the control group,sleep deprivation reduced the choice accuracy (P<0.001) and increased the omission responses,omission percent,and mean correct response latency (P=0.002,P=0.003,P=0.020).Compared with the sleep deprivation group,medium- and high-dose Schisandrae Chinensis Fructus lignans and atomoxetine hydrochloride improved the alertness of rats,as demonstrated by the increased choice accuracy (P=0.001,P=0.006,P<0.001) and reduced omission responses (P=0.001,P=0.001,P<0.001),omission percent (P=0.001,P=0.002,P<0.001),and mean correct response latency (P=0.018,P=0.003,P=0.014).Compared with the control group,the sleep deprivation group showed elevated level of orexin A in the serum (P<0.001),up-regulated expression of c-Fos (P<0.001),and down-regulated expression of orexin receptor 1 (P=0.037) in the prefrontal cortex.Compared with the sleep deprivation group,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride lowered the orexin A level in the serum (P=0.005,P=0.029),down-regulated the expression of c-Fos (P=0.028,P=0.036),and up-regulated the expression of orexin receptor 1 (P=0.043,P=0.013) in the prefrontal cortex. Conclusion Schisandrae Chinensis Fructus lignans may antagonize the alertness decrease caused by sleep deprivation by regulating the secretion of orexin and the expression of orexin receptor 1 in the prefrontal cortex.


Subject(s)
Lignans , Rats, Sprague-Dawley , Schisandra , Sleep Deprivation , Animals , Lignans/pharmacology , Schisandra/chemistry , Male , Sleep Deprivation/metabolism , Sleep Deprivation/drug therapy , Rats , Orexins/metabolism , Neuropeptides/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
6.
Nat Sci Sleep ; 16: 1313-1325, 2024.
Article in English | MEDLINE | ID: mdl-39247907

ABSTRACT

Introduction: Sleep deprivation(SD) has numerous negative effects on mental health. A growing body of research has confirmed the implication of gut microbiota in mental disorders. However, the specific modifications in mammalian gut microbiota following SD exhibit variations across different studies. Methods: Male specific-pathogen-free Wistar rats were given a modified multiple-platform exposure for 7 days of SD. Fecal samples were obtained from the control and SD groups both at baseline and after 7 days of SD. We utilized 16S rDNA gene sequencing to investigate the gut microbial composition and functional pathways in rats. Results: Analysis of the microbiota composition revealed a significant change in gut microbial composition after chronic SD, especially at the phylum level. The relative abundances of p_Firmicutes, g_Romboutsia, and g_Enterococcus increased, whereas those of p_Bacteroidetes, p_Verrucomicrobia, p_Fusobacteria, g_Akkermansia, and g_Cetobacterium decreased in animals after chronic SD compared with controls or animals before SD. The ratio of Firmicutes to Bacteroidetes exhibited an increase following SD. The relative abundance of gut microbiota related to the functional pathways of GABAergic and glutamatergic synapses was observed to be diminished in rats following SD compared to pre-SD. Conclusion: Collectively, these findings suggest that chronic SD causes significant alterations in both the structural composition and functional pathways of the gut microbiome. Further researches are necessary to investigate the chronological and causal connections among SD, the gut microbiota and mental disorders.

7.
Anal Chim Acta ; 1328: 343125, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39266191

ABSTRACT

BACKGROUND: TRY-NAD metabolic network includes TRY (tryptophan), 5-HT (5-hydroxytryptamine), KYN (kynurenine), and NAD (nicotinamide adenine dinucleotide) pathway, which plays a significant role in neurological diseases and ageing. It is important to monitor these metabolites for studying the pathological anatomy of disease and treatment of responses evaluation. Although previous studies have reported quantitative methods for several metabolites in the network, the bottlenecks of simultaneously quantifying the whole metabolic network are their similar structures, diverse physico-chemical properties, and instability. Standardized protocols for the whole metabolic network are still missing, which hinders the in-depth study of TRY-NAD metabolic network in laboratory research and clinical screening. RESULTS: We developed a LC-MS/MS method for quantifying 28 metabolites in the TRY-NAD network simultaneously. Optimization was done for the mass spectral parameters, chromatographic conditions and sample pretreatment process. The developed method was fully validated in terms of standard curves, sensitivity, carryover, recovery, matrix effect, accuracy, precision, and stability. The pretreatment of 30 samples only takes 90 min, and the LC-MS/MS running time of one sample is only 13 min. With this method, we bring to light the chaos of global TRY-NAD metabolic network in sleep deprivation mice for the first time, including serum, clotted blood cells, hippocampus, cerebral cortex, and liver. NAD pathway levels in brain and blood decreased, whereas the opposite happened in the liver. The 5-HT pathway decreased and the concentration of KYN increased significantly in the brain. The concentration of many metabolites in KYN pathway (NAD+ de novo synthesis pathway) increased in the liver. SIGNIFICANCE: This method is the first time to determine the metabolites of KYN, 5-HT and NAD pathway at the same time, and it is found that TRY-NAD metabolic network will be disordered after sleep deprivation. This work clarifies the importance of the pH of the extraction solution, the time and temperature control in pretreatment in standardized protocols building, and overcoming the problems of inconsistent sample pretreatment, separation, matrix effect interference and potential metabolite degradation. This method exhibits great prospects in providing more information on metabolic disturbances caused by sleep deprivation as well as neurological diseases and ageing.


Subject(s)
NAD , Sleep Deprivation , Tandem Mass Spectrometry , Tryptophan , Animals , Tandem Mass Spectrometry/methods , NAD/metabolism , Mice , Tryptophan/metabolism , Tryptophan/blood , Tryptophan/analysis , Sleep Deprivation/metabolism , Sleep Deprivation/blood , Male , Metabolic Networks and Pathways , Chromatography, Liquid , Mice, Inbred C57BL , Liquid Chromatography-Mass Spectrometry
8.
Neuroimage ; 299: 120837, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241898

ABSTRACT

Sleep deprivation has been demonstrated to exert widespread and intricate impacts on the brain network. The human brain network is a modular network composed of interconnected nodes. This network consists of provincial hubs and connector hubs, with provincial hubs having diverse connectivities within their own modules, while connector hubs distribute their connectivities across different modules. The latter is crucial for integrating information from various modules and ensuring the normal functioning of the modular brain. However, there has been a lack of systematic investigation into the impact of sleep deprivation on brain connector hubs. In this study, we utilized functional connectivity from resting-state functional magnetic resonance imaging, as well as structural connectivity from diffusion-weighted imaging, to systematically explore the variation of connector hub properties in the cerebral cortex after one night of sleep deprivation. The normalized participation coefficients (PCnorm) were utilized to identify connector hubs. In both the functional and structural networks, connector hubs exhibited a significant increase in average PCnorm, indicating the diversity enhancement of the connector hub following sleep deprivation. This enhancement is associated with increased network cost, reduced modularity, and decreased small-worldness, but enhanced global efficiency. This may potentially signify a compensatory mechanism within the brain following sleep deprivation. The significantly affected connector hubs were primarily observed in both the Control Network and Salience Network. We believe that the observed results reflect the increasing demand on the brain to invest more effort at preventing performance deterioration after sleep loss, in exchange for increased communication efficiency, especially involving systems responsible for neural resource allocation and cognitive control. These results have been replicated in an independent dataset. In conclusion, this study has enhanced our understanding of the compensatory mechanism in the brain response to sleep deprivation. This compensation is characterized by an enhancement in the connector hubs responsible for inter-modular communication, especially those related to neural resource and cognitive control. As a result, this compensation comes with a higher network cost but leads to an improvement in global communication efficiency, akin to a more random-like network manner.

9.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39229182

ABSTRACT

Sleep is an essential, tightly regulated biological function. Sleep is also a homeostatic process, with the need to sleep increasing as a function of being awake. Acute sleep deprivation (SD) increases sleep need, and subsequent recovery sleep (RS) discharges it. SD is known to alter brain gene expression in rodents, but it remains unclear which changes are linked to sleep homeostasis, SD-related impairments, or non-sleep-specific effects. To investigate this question, we analyzed RNA-seq data from adult wild-type male mice subjected to 3 and 5-6 hours of SD and 2 and 6 hours of RS after SD. We hypothesized molecular changes associated with sleep homeostasis mirror sleep pressure dynamics as defined by brain electrical activity, peaking at 5-6 hours of SD, and are no longer differentially expressed after 2 hours of RS. We report 5-6 hours of SD produces the largest effect on gene expression, affecting approximately half of the cortical transcriptome, with most differentially expressed genes (DEGs) downregulated. The majority of DEGs normalize after 2 hours of RS and are involved in redox metabolism, chromatin regulation, and DNA damage/repair. Additionally, RS affects gene expression related to mitochondrial metabolism and Wnt-signaling, potentially contributing to its restorative effects. DEGs associated with cholesterol metabolism and stress response do not normalize within 6 hours and may be non-sleep-specific. Finally, DEGs involved in insulin signaling, MAPK signaling, and RNA-binding may mediate the impairing effects of SD. Overall, our results offer insight into the molecular mechanisms underlying sleep homeostasis and the broader effects of SD.

10.
Neurosci Bull ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158824

ABSTRACT

Sleep deprivation has been shown to exacerbate pain sensitivity and may contribute to the onset of chronic pain, yet the precise neural mechanisms underlying this association remain elusive. In our study, we explored the contribution of cholinergic neurons within the medial habenula (MHb) to hyperalgesia induced by sleep deprivation in rats. Our findings indicate that the activity of MHb cholinergic neurons diminishes during sleep deprivation and that chemogenetic stimulation of these neurons can mitigate the results. Interestingly, we did not find a direct response of MHb cholinergic neurons to pain stimulation. Further investigation identified the interpeduncular nucleus (IPN) and the paraventricular nucleus of the thalamus (PVT) as key players in the pro-nociceptive effect of sleep deprivation. Stimulating the pathways connecting the MHb to the IPN and PVT alleviated the hyperalgesia. These results underscore the important role of MHb cholinergic neurons in modulating pain sensitivity linked to sleep deprivation, highlighting potential neural targets for mitigating sleep deprivation-induced hyperalgesia.

12.
Metabolomics ; 20(5): 97, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112673

ABSTRACT

INTRODUCTION: The human salivary metabolome is a rich source of information for metabolomics studies. Among other influences, individual differences in sleep-wake history and time of day may affect the metabolome. OBJECTIVES: We aimed to characterize the influence of a single night of sleep deprivation compared to sufficient sleep on the metabolites present in oral fluid and to assess the implications of sampling time points for the design of metabolomics studies. METHODS: Oral fluid specimens of 13 healthy young males were obtained in Salivette® devices at regular intervals in both a control condition (repeated 8-hour sleep) and a sleep deprivation condition (total sleep deprivation of 8 h, recovery sleep of 8 h) and their metabolic contents compared in a semi-targeted metabolomics approach. RESULTS: Analysis of variance results showed factor 'time' (i.e., sampling time point) representing the major influencer (median 9.24%, range 3.02-42.91%), surpassing the intervention of sleep deprivation (median 1.81%, range 0.19-12.46%). In addition, we found about 10% of all metabolic features to have significantly changed in at least one time point after a night of sleep deprivation when compared to 8 h of sleep. CONCLUSION: The majority of significant alterations in metabolites' abundances were found when sampled in the morning hours, which can lead to subsequent misinterpretations of experimental effects in metabolomics studies. Beyond applying a within-subject design with identical sample collection times, we highly recommend monitoring participants' sleep-wake schedules prior to and during experiments, even if the study focus is not sleep-related (e.g., via actigraphy).


Subject(s)
Metabolomics , Saliva , Sleep , Humans , Male , Metabolomics/methods , Saliva/metabolism , Saliva/chemistry , Sleep/physiology , Young Adult , Adult , Sleep Deprivation/metabolism , Metabolome/physiology , Time Factors
13.
Article in English | MEDLINE | ID: mdl-39178028

ABSTRACT

Exaggerated blood pressure (BP) responses during exercise are independently associated with future development of hypertension. Partial sleep deprivation (PSD) can increase 24-hour ambulatory BP, but the effects on exercise BP are unclear. We hypothesized that acute PSD would augment the BP response to constant load cycling exercise and a 20-minute time trial. Twenty-two, healthy adults (22±3 years; 13 males; V̇O2peak: 43.6±8.2 ml.kg-1.min-1) completed a randomized crossover trial whereby they slept normally (normal sleep-wake schedule for each participant), or sleep was partially deprived (early awakening, 40% of normal sleep duration). Each participant completed a 12-minute warm-up consisting of two 6-minute steps (step 1: 62±25 W; step 2: 137±60 W) followed by a 20-minute time trial on a cycle ergometer. PSD did not alter power output during the 20-minute time trial ([control vs. PSD] 170±68 vs. 168±68 W, P=0.65). Systolic BP did not differ during step 1 of the warm-up (141±15 vs. 137±12 mmHg, P=0.39) but was lower following PSD during step 2 (165±21 vs. 159±22 mmHg, P=0.004) and the 20-minute time trial (171±20 vs. 164±23 mmHg, P<0.001). These results were maintained when V̇O2peak was included as a covariate. Systolic BP responses were modulated by sex (time x visit x sex interaction P=0.03), with attenuated systolic BP during the warm-up and the 20-minute time trial in males but not females. In contrast to our hypothesis, acute PSD attenuates systolic BP responses during constant load and 20-minute time trial cycling exercise, though these observations appear to be primarily driven by changes in males.

14.
Lab Anim Res ; 40(1): 29, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164744

ABSTRACT

BACKGROUND: Sleep deprivation (SD) due to an unhealthy lifestyle poses an oxidative challenge and is closely associated with an increased risk and prevalence of different metabolic disorders. Although the negative consequences of SD are well reported on mental health little is known about its detrimental effects on liver function and lipid metabolism. Tinospora cordifolia is reported for its hepatoprotective activity in different pre-clinical model systems. The current study was designed to elucidate the cumulative effects of aging and acute SD on liver functions, oxidative stress, and lipid metabolism, and their management by butanol extract of T. cordifolia (B-TCE) using middle-aged female acyclic rats as the model system. RESULTS: Rats were divided into 4 groups: (1) Vehicle-undisturbed (VUD) (2) Vehicle-sleep deprived (VSD) (3) B-TCE pre-treated sleep-deprived (TSD) (4) B-TCE pre-treated undisturbed sleep (TUD). TSD and TUD groups were given 35 mg/kg of B-TCE once daily for 15 days followed by 12 h of sleep deprivation (6 a.m.-6 p.m.) of VSD and TSD group animals using the gentle-handling method while VUD and TUD group animals were left undisturbed. SD of VSD group animals increased oxidative stress, liver function disruption, and dyslipidemia which were ameliorated by B-TCE pre-treatment. Further, B-TCE was observed to target AMPK and its downstream lipid metabolism pathways as well as the p-Akt/cyclinD1/p-bad pathway of cell survival as possible underlying mechanisms of its hepatoprotective activity. CONCLUSIONS: These findings suggest that B-TCE being a multi-component extract may be a potential agent in curtailing sleep-related problems and preventing SD-associated hepatotoxicity and dyslipidemia in postmenopausal women.

15.
Heliyon ; 10(15): e35470, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170531

ABSTRACT

Resident physicians on long-term night shifts often face sleep deprivation, affecting the immune response, notably neutrophils, vital to innate defense mechanisms. Sleep-deprived residents exhibit altered neutrophil counts and reduced phagocytosis and NADPH oxidase activity, critical to combating infections. Our study focused on neutrophil extracellular traps (NETs), a defense process against pathogens not previously linked to sleep loss. Results revealed that sleep-deprived residents exhibited a 19.8 % reduction in NET formation compared to hospital workers with regular sleep patterns (P < 0.01). Additionally, key NETs proteins, Neutrophil Elastase and Myeloperoxidase, were less active in sleep-deprived individuals (1.53mU; P < 0.01 and 0.95U; P < 0.001 decrease, accordingly). Interestingly, the ability to form NETs resumed to normal levels three months post-residency among pediatric residents. The causal relationship between reduced NETs due to sleep deprivation and the increased susceptibility to infections, as well as its implications for infection severity, is a critical area for further investigation.

16.
Adv Neurobiol ; 37: 243-260, 2024.
Article in English | MEDLINE | ID: mdl-39207696

ABSTRACT

Sleep serves a multitude of roles in brain maturation and function. Although the neural networks involved in sleep regulation have been extensively characterized, it is increasingly recognized that neurons are not the sole conductor orchestrating the rhythmic cycle of sleep and wakefulness. In the central nervous system, microglia have emerged as an important player in sleep regulation. Within the last two decades, microglia have gained substantial attention for carrying out numerous nonimmune tasks that are crucial for brain development and function by co-opting similar mechanisms used in their conventional immune functions. Here, we highlight the importance of microglia in sleep regulation with recent findings reporting an arrhythmic sleep/wake cycle in the absence of microglia. Although the underlying mechanisms for such regulation are still being uncovered, it is likely that microglial contributions to the rhythmic control of the sleep/wake cycle come from their influence on synaptic strength and neuronal activity. We review the current literature to provide speculative signaling pathways and suggest key questions for future research. Advancing our knowledge of the mechanistic contribution of microglia to sleep regulation will not only further our insight into this critical biological process but also be instrumental in providing novel therapeutic strategies for sleep disorders.


Subject(s)
Microglia , Sleep , Wakefulness , Microglia/metabolism , Microglia/physiology , Wakefulness/physiology , Humans , Sleep/physiology , Animals , Brain , Neurons/physiology , Neurons/metabolism , Signal Transduction/physiology
17.
Adv Neurobiol ; 37: 357-377, 2024.
Article in English | MEDLINE | ID: mdl-39207702

ABSTRACT

Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.


Subject(s)
Microglia , Sleep Wake Disorders , Humans , Microglia/metabolism , Sleep Wake Disorders/metabolism , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/epidemiology , Animals , Alzheimer Disease/metabolism , Sleep Deprivation/metabolism , Parkinson Disease , Narcolepsy/physiopathology , Narcolepsy/immunology , Narcolepsy/metabolism , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/epidemiology , Sleep Apnea Syndromes/epidemiology , Sleep Apnea Syndromes/physiopathology
18.
Brain Behav Immun ; 122: 325-338, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134184

ABSTRACT

Prostaglandins (PGs) play a crucial role in sleep regulation, yet the broader physiological context that leads to the activation of the prostaglandin-mediated sleep-promoting system remains elusive. In this study, we explored sleep-inducing mechanisms potentially involving PGs, including microbial, immune and thermal stimuli as well as homeostatic sleep responses induced by short-term sleep deprivation using cyclooxygenase-2 knockout (COX-2 KO) mice and their wild-type littermates (WT). Systemic administration of 0.4 µg lipopolysaccharide (LPS) induced increased non-rapid-eye movement sleep (NREMS) and fever in WT animals, these effects were completely absent in COX-2 KO mice. This finding underscores the essential role of COX-2-dependent prostaglandins in mediating sleep and febrile responses to LPS. In contrast, the sleep and fever responses induced by tumor necrosis factor α, a proinflammatory cytokine which activates COX-2, were preserved in COX-2 KO animals, indicating that these effects are independent of COX-2-related signaling. Additionally, we examined the impact of ambient temperature on sleep. The sleep-promoting effects of moderate warm ambient temperature were suppressed in COX-2 KO animals, resulting in significantly reduced NREMS at ambient temperatures of 30 °C and 35 °C compared to WT mice. However, rapid-eye-movement sleep responses to moderately cold or warm temperatures did not differ between the two genotypes. Furthermore, 6 h of sleep deprivation induced rebound increases in sleep with no significant differences observed between COX-2 KO and WT mice. This suggests that while COX-2-derived prostaglandins are crucial for the somnogenic effects of increased ambient temperature, the homeostatic responses to sleep loss are COX-2-independent. Overall, the results highlight the critical role of COX-2-derived prostaglandins as mediators of the sleep-wake and thermoregulatory responses to various physiological challenges, including microbial, immune, and thermal stimuli. These findings emphasize the interconnected regulation of body temperature and sleep, with peripheral mechanisms emerging as key players in these integrative processes.

19.
Prog Brain Res ; 288: 81-114, 2024.
Article in English | MEDLINE | ID: mdl-39168560

ABSTRACT

Consuming coffee, a widely enjoyed beverage with caffeine, can impact the central nervous system and disturb sleep if taken too close to bedtime. Caffeine impacts sleep by slowing the onset, blocking adenosine receptors, lowering deep sleep levels, disrupting sleep patterns, and lessening rapid eye movement sleep. Although coffee can help with alertness in the morning, it may disturb sleep in the evening, particularly for individuals who are sensitive to caffeine. To enhance the quality of sleep, reduce the consumption of caffeine in the afternoon and evening, refrain from drinking caffeine before going to bed, and choose decaffeinated drinks instead. Variables such as personal reactions, ability to handle caffeine, and engagement with other compounds also influence the impact of coffee on sleep. Keeping track of how much caffeine you consume and your sleeping habits can assist in recognizing any disturbances and making needed changes. Furthermore, taking into account variables such as metabolism, age, and the timing of coffee consumption can assist in lessening the effects of coffee on sleep. In general, paying attention to the amount of caffeine consumed from different sources and consuming it at the right times can assist in preserving healthy sleep patterns even while enjoying coffee.


Subject(s)
Caffeine , Coffee , Sleep , Humans , Caffeine/pharmacology , Caffeine/administration & dosage , Sleep/drug effects , Sleep/physiology , Central Nervous System Stimulants/pharmacology
20.
Nat Sci Sleep ; 16: 1109-1118, 2024.
Article in English | MEDLINE | ID: mdl-39100908

ABSTRACT

Objective: The thalamus plays a critical role in attentional maintenance. Previous studies have revealed the dysfunction of the thalamus in attention decline after acute sleep deprivation (SD). However, the functional connectivity (FC) between the thalamus subregions and cortical regions underlying attentional impairment after acute SD remains unclear. Here, we aimed to probe the relationship between attentional function and the altered thalamocortical FC after acute SD. Methods: In this study, 25 healthy participants with regular sleep conducted an attentional network test and received a resting-state fMRI scan before and after 24 hours of SD. Then, we analyzed the FC between the thalamus and cerebrum and relationships with attentional function in the enrolled subjects. Results: Our results showed that the participants showed a significantly lower alerting effect, a higher executive effect, and lower accuracy after acute SD. Compared to the rested wakefulness state, we observed decreased FCs between the "somatosensory" thalamic seed and left frontal pole, right frontal pole, left middle temporal gyrus (posterior division), and right middle temporal gyrus (posterior division). Furthermore, the reduced FC between the right middle temporal gyrus and "somatosensory" thalamic seed was negatively associated with the change in orienting effect of the participants. Conclusion: Our findings reveal that the disrupted FC between thalamus subregions and cortical regions may contribute to impaired attention after SD.

SELECTION OF CITATIONS
SEARCH DETAIL