Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 30(20): 58412-58427, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36991202

ABSTRACT

The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.


Subject(s)
Sewage , Wastewater , Bioreactors , Electricity , Membranes, Artificial , Waste Disposal, Fluid/methods
2.
Eng. sanit. ambient ; Eng. sanit. ambient;24(1): 157-168, jan.-fev. 2019. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1001941

ABSTRACT

RESUMO O presente estudo avaliou o efeito da idade do lodo (θc) no potencial incrustante do licor misto em um biorreator à membrana (BRM) tratando esgoto sanitário. Tal avaliação foi conduzida em BRM construído em escala de bancada, com volume útil de 15 L, operado por 420 dias na modalidade de batelada sequencial. Durante o período experimental, foram aplicadas 3 estratégias operacionais, E-1, E-2 e E-3, em que foram testadas as idades de lodo de 80, 40 e 20 dias, respectivamente. Os resultados revelaram que a utilização da idade de lodo de 20 dias resultou em licor misto com maior potencial incrustante, apresentando, neste caso, uma velocidade de colmatação (VC) das membranas de 1,95 mbar dia-1, aproximadamente 2 vezes maior do que a observada nas idades de lodo de 80 e 40 dias. A maior colmatação observada foi atribuída a maior concentração de produtos microbianos solúveis (PMSs) no licor misto e a maior relação proteínas/polissacarídeos (PN/PS) dos flocos biológicos nesse período em questão. Por outro lado, a aplicação da idade de lodo de 80 dias resultou em menor VC das membranas do BRM, com valor de 0,82 mbar dia-1. Contudo, no período final dessa estratégia foi observado crescimento excessivo de bactérias filamentosas, que se refletiu em piora da filtrabilidade do licor misto e aumento da VC das membranas. De maneira geral, os resultados obtidos mostraram que a aplicação da idade de lodo de 40 dias resultou em licor misto com menor potencial incrustante.


ABSTRACT This study evaluated the effect of solids retention time (SRT) on membrane fouling rate in a membrane bioreactor (MBR) treating municipal wastewater. The evaluation was conducted in a membrane bioreactor built in bench scale, with a volume of 15 L, operated for 420 days in the sequential batch regime. During this period, three experimental runs were applied, E-1, E-2 and E-3, in which the solids retention time of 80, 40 and 20 days, respectively, were tested. The results showed that use of 20-days solids retention time resulted in a higher membrane fouling rate (MFR), with value of 1,95 mbar d-1, approximately two times higher than observed in the solids retention time of 80 and 40 days. The higher membrane fouling rate observed was attributed to a higher concentration of soluble microbial products (SMP) in the mixed liquor and to the higher proteins/polysaccharides ratio of the biological flocs in this period. On the other hand, the use of 80-days solids retention time resulted in a lower membrane fouling rate, with a value of 0.82 mbar d-1. However, it was observed in the final period of this experimental run an excessive growth of filamentous bacteria, which was reflected in a deterioration of the mixed liquor filterability and an increase of membrane fouling rate. Overall, the results showed that the 40-days solids retention time resulted in a mixed liquor with lower fouling propensity.

3.
Environ Technol ; 38(7): 806-815, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27408986

ABSTRACT

This study evaluated the removal of organic matter, nitrogen and phosphate from a municipal wastewater in a sequencing batch membrane bioreactor (SBMBR) operated at different solids retention times (SRTs) and subjected to different aeration profiles. The results demonstrated that SRT reduction from 80 to 20 d had a negligible effect on chemical oxygen demand (COD) removal and only a slight negative effect on nitrification. COD removal efficiency remained stable at 97%, whereas ammonium removal decreased from 99% to 97%. The total nitrogen removal efficiency was improved by SRT reduction, increasing from 80% to 86%. Although the total phosphorus (TP) removal was not significantly affected by the SRT reduction, ranging from 40-49%, the P-release and P-uptake processes were observed to increase as the SRT was reduced. The implementation of a pre-aeration phase in the SBMBR operating cycle allowed a higher TP removal performance, which reached up to 76%. Batch tests suggested that the fraction of phosphate removed anoxically from the total (anoxic + aerobic) phosphate removal decreased with the SRT reduction.


Subject(s)
Nitrogen/isolation & purification , Phosphorus/isolation & purification , Waste Disposal, Fluid/methods , Water Purification/methods , Bioreactors/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL