Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 815
Filter
1.
Biodivers Data J ; 12: e127190, 2024.
Article in English | MEDLINE | ID: mdl-39360178

ABSTRACT

Tipulidae, commonly known as true crane flies, represent one of the most species-rich dipteran families, boasting approximately 4,500 known species globally. Their larvae serve as vital decomposers across diverse ecosystems, prompting their frequent and close observation in biomonitoring programs. However, traditional morphological identification methods are laborious and time-consuming, underscoring the need for a comprehensive DNA barcode reference library to speed up species determination. In this study, we present the outcomes of the German Barcode of Life initiative focused on Tipulidae. Our DNA barcode library comprises 824 high-quality cytochrome c oxidase I (COI) barcodes encompassing 76 crane fly species, counting for ca. 54% of the German tipulid fauna. Our results significantly increased the number of European tipulid species available in the Barcode of Life Data System (BOLD) by 14%. Additionally, the number of barcodes from European tipulid specimens more than doubled, with an increase of 118%, bolstering the DNA resource for future identification inquiries. Employing diverse species delimitation algorithms - including the multi-rate Poisson tree processes model (mPTP), Barcode Index Number assignments (BIN), Assemble Species by Automatic Partitioning (ASAP), and the TaxCI R-script - we successfully match 76-86% of the morphologically identified species. Further validation through neighbor-joining tree topology analysis and comparison with 712 additional European tipulid barcodes yield a remarkable 89% success rate for the species identification of German tipulids based on COI barcodes. This comprehensive DNA barcode dataset not only enhances species identification accuracy but also serves as a pivotal resource for ecological and biomonitoring studies, fostering a deeper understanding of crane fly diversity and distribution across terrestrial landscapes.

2.
J Fish Biol ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385531

ABSTRACT

Astroblepus species, commonly known as Andean climbing catfish, exhibit a unique challenge in species delimitation, leading to ongoing taxonomic debates. Here we report data on Astroblepus mindoensis, a vulnerable species endemic to Ecuador, obtained by an integrative approach that includes cytogenetic analysis, molecular identification of the specimens, and recording of morphological and morphometric characters useful for species diagnosis. Thus, this study aimed to associate the karyotype data of the specimens analyzed with morphological and molecular characters, improving and expanding the existing taxonomic information, thus contributing to the systematics of the species. Our morphology results, unlike Regan's original description, which is brief and ambiguous, provide a more detailed morphometric and meristic description. Molecular phylogenetic reconstruction and genetic distance based on a fragment of the cytochrome c oxidase subunit I (COI) showed that our samples constitute a well-supported and monophyletic clade within the A. grixalvii species complex. The cytogenetic analysis identified distinct chromosomal markers, including a single cluster of major ribosomal genes (on chromosome pair 3) and of minor ribosomal genes (on chromosome pair 12) with their localization differing from those reported in other Astroblepus species analyzed. Additionally, the presence of a heteromorphic chromosome pair in males suggests the presence of an XX/XY sex-determination system that has not been identified in other congeneric species. Further investigation is necessary to determine if these chromosomes are associated with the accumulation of repeated sequences, as typically occurs with sex chromosomes, and to assess their presence in other species of the genus.

3.
Zookeys ; 1213: 95-182, 2024.
Article in English | MEDLINE | ID: mdl-39372282

ABSTRACT

Micropholcus Deeleman-Reinhold & Prinsen, 1987 is one of only two Pholcidae genera known to occur both in the Old and New Worlds. However, there are major morphological and ecological differences among geographically separate groups of species, and it was mainly molecular data that have resulted in our current view of uniting all these species into a single genus. In the Old World, only four species have previously been described. Here, current knowledge about Old World Micropholcus is reviewed, redescribing three of the four previously known species, and describing twelve new species, originating from Saudi Arabia (M.dhahran Huber, sp. nov., M.harajah Huber, sp. nov., M.alfara Huber, sp. nov., M.abha Huber, sp. nov., M.tanomah Huber, sp. nov., M.bashayer Huber, sp. nov., M.maysaan Huber, sp. nov.), Oman (M.darbat Huber, sp. nov., M.shaat Huber, sp. nov.), Morocco (M.ghar Huber, sp. nov., M.khenifra Huber, Lecigne & Lips, sp. nov.), and the Philippines (M.bukidnon Huber, sp. nov.). We provide an exploratory species delimitation analysis based on CO1 barcodes, extensive SEM data, and first records of Acroceridae (Diptera) larvae in Pholcidae, extracted from book lungs.

4.
Acta Trop ; : 107424, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369928

ABSTRACT

The Mediterranean recluse spider, Loxosceles rufescens, has been discovered for the first time inhabiting human dwellings in Bangkok, Thailand. Expeditions across 39 localities revealed five establishments with L. rufescens populations. The highest density was recorded in a storage house on Yaowarat Road, located in the heart of Bangkok's Chinatown, where 315 individuals were found, including adults, juveniles, and spiderlings. This medically significant spider's presence in such a densely populated urban area raises concerns about potential envenomation risks. Thirteen specimens of L. rufescens were extracted for DNA and sequenced for molecular phylogenetic analyses. COI and ITS2 markers were used to investigate relationships within L. rufescens and across available Loxosceles species sequences. Results indicate COI is superior for resolving species-level genetic clusters compared to ITS2. Surprisingly, L. rufescens individuals from the same house were found in significantly distant COI lineages, suggesting mtDNA may not be suitable for studying intra-specific phylogeography in this case. Species delimitation methods ABGD and ASAP demonstrated promising results for both COI and ITS2, while bPTP and GMYC tended to overestimate species numbers. ITS2 exhibited high sequence similarity in L. rufescens, suggesting potential utility as a barcoding marker for identification of this globally distributed species. Genetic distance analyses revealed a potential barcoding gap (K2P) of 8-9% for COI and <2% for ITS2 in Loxosceles. This study contributes valuable sequence data for the medically important genus Loxosceles and highlights the need for integrative approaches in understanding its evolution and spread. The findings have important implications for pest management strategies and public health in urban environments.

5.
Article in English | MEDLINE | ID: mdl-39329372

ABSTRACT

The populations of the loggerhead turtles, Caretta caretta, present four main D-loop mitochondrial haplogroups that are distributed across the Indo-Pacific, Mediterranean, and Atlantic oceans. The Southwestern Atlantic (SWA) is one of the Regional Management Units (RMUs) of loggerheads, characterized by unique haplotypes, high nest density, and distinct life history traits. Detecting new D-loop haplogroups is important, particularly endemic ones, as they can enhance our understanding of their life history within the RMUs and contribute to the resolution of mixed stock analysis. In this study, we conducted a series of phylogenetic delimitation and network analyses to identify, validate, and infer the origin of four new D-loop haplotypes detected in the loggerhead populations from the SWA. Our findings demonstrate that these new D-loop haplotypes are valid and unique to the SWA lineage, potentially aiding in the delimitation of individuals' origins and the inference of their lineage.

6.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39348593

ABSTRACT

The subfamily Molytinae (Coleoptera: Curculionidae), being the second largest group within the family Curculionidae, exhibits a diverse range of hosts and poses a serious threat to agricultural and forestry industries. We used 1,290 cytochrome c oxidase subunit I (COI) barcodes to assess the efficiency of COI barcodes in species differentiation and uncover cryptic species diversity within weevils of Molytinae. The average Kimura 2-parameter distances within species, genus, and subfamily were 2.90%, 11.0%, and 22.26%, respectively, indicating significant genetic differentiation at both levels. Moreover, there exists a considerable degree of overlap between intraspecific (0%-27.50%) and interspecific genetic distances (GDs; 0%-39.30%). The application of Automatic barcode gap discovery, Assemble Species by Automatic Partitioning, Barcode Index Number, Poisson Tree Processes (PTP), Bayesian Poisson Tree Processes (bPTP), and jMOTU resulted in the identification of 279, 275, 494, 322, 320, and 279 molecular operational taxonomic units, respectively. The integration of 6 methods successfully delimited species of Molytinae in 86.6% of all examined morphospecies, surpassing a threshold value of 3% GD (73.0%). A total of 28 morphospecies exhibiting significant intraspecific divergences were assigned to multiple MOTUs, respectively, suggesting the presence of cryptic diversity or population divergence. The identification of cryptic species within certain morphological species in this study necessitates further investigation through comprehensive taxonomic practices in the future.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Weevils , Animals , Weevils/genetics , Weevils/classification , Electron Transport Complex IV/genetics , Genetic Variation , Phylogeny
7.
bioRxiv ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39282442

ABSTRACT

Leaf-eared mice (genus Phyllotis) are among the most widespread and abundant small mammals in the Andean Altiplano, but species boundaries and distributional limits are often poorly delineated due to sparse survey data from remote mountains and high-elevation deserts. Here we report a combined analysis of mitochondrial DNA variation and whole-genome sequence (WGS) variation in Phyllotis mice to delimit species boundaries, to assess the timescale of diversification of the group, and to examine evidence for interspecific hybridization. Estimates of divergence dates suggest that most diversification of Phyllotis occurred during the past 3 million years. Consistent with the Pleistocene Aridification hypothesis, our results suggest that diversification of Phyllotis largely coincided with climatically induced environmental changes in the mid- to late Pleistocene. Contrary to the Montane Uplift hypothesis, most diversification in the group occurred well after the major phase of uplift of the Central Andean Plateau. Species delimitation analyses revealed surprising patterns of cryptic diversity within several nominal forms, suggesting the presence of much undescribed alpha diversity in the genus. Results of genomic analyses revealed evidence of ongoing hybridization between the sister species Phyllotis limatus and P. vaccarum and suggest that the contemporary zone of range overlap between the two species represents an active hybrid zone.

8.
Biology (Basel) ; 13(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39336120

ABSTRACT

The genus Chaetogaster belongs to the subfamily Naidinae (Naididae); it includes mostly species of small size and is diverse and abundant in surface coarse sediments in streams. The aim of the present study is to initiate an inventory of lineages (=species) of Chaetogaster in Switzerland. We used 135 specimens collected at 6 sites in 4 streams of 4 cantons. We sequenced the cytochrome c oxidase (COI) gene from all specimens and ITS2 and rDNA 28S from all or several specimens of each lineage that was delimited using COI data, and preserved, for morphological identifications, the anterior part of almost all sequenced specimens. We were able to delimit, based on the calculation of genetic distances and analyses of single-locus data, one lineage for Chaetogaster diaphanus (Gruithuisen, 1828), three within Chaetogaster diastrophus (Gruithuisen, 1828), one for Chaetogaster langi Brestcher, 1896, one for Chaetogaster setosus Svetlov, 1925, and three unidentified Chaetogaster spp. Two lineages of Chaetogaster spp. could correspond to a new morphological group, but this should be confirmed in more specimens. We proposed a new identification key of the nominal species and described the three C. diastrophus lineages and two Chaetogaster spp. as new species. The prospects of the present work are to complete the data of the molecular diversity of this genus in Switzerland and to describe the newly found Chaetogaster species on a molecular/morphological basis.

9.
Mol Phylogenet Evol ; 201: 108203, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303973

ABSTRACT

With more than 600 recognized species, the genus Pristimantis is already the most diverse among vertebrates, but described species only represent a fraction of the actual diversity in this clade. This genus is widely distributed throughout the Neotropics and represents an interesting model for biogeographic studies because Pristimantis spp. are direct developing and generally have narrow ecological niches and low dispersal abilities. The P. unistrigatus species group is one of the most important components in the genus (ca. 200 recognized species) and has been supported by morphological but not by molecular evidence. We assessed the species boundaries and distribution in the P. unistrigatus species group and infer spatiotemporal patterns of diversification related to historical landscape changes in the Neotropics. We gathered three mitochondrial, and two nuclear DNA loci from 416 specimens throughout the range of the group, and including 68 nominal species. We redefine the group based on the obtained phylogeny and found 151 candidate species that composes it, with 83 of these remaining undescribed. We recovered 11 major clades within the group that diverged before 13 Ma. The diversification of the group started during the early Miocene most likely in northwestern South America, currently corresponding to western Amazonia and northern Andes. The other neotropical areas subsequently acted as sinks, receiving lineages mostly during the last 10 Ma, after the demise of the Pebas System and the setup of the modern Amazonian hydrographic system.

10.
Ann Bot ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196773

ABSTRACT

BACKGROUND AND AIMS: Species delimitation can be challenging when analysing recently diverged species, especially those taxonomically synonymised due to morphological similarities. We aimed to untangle the relationships between two grassland species, Petunia guarapuavensis and Petunia scheideana, exploring the dynamics of fast divergence and addressing their species delimitation. METHODS: We used a low-coverage genome sequencing and population genomic approach to distinguish species and populations between P. guarapuavensis and P. scheideana. Our analysis focused on detecting structuration, hybridisation/introgression, and phylogenetic patterns. We employed demographic models to support species delimitation while exploring potential phylogeographic barriers influencing gene flow. KEY RESULTS: Our findings indicated differentiation between the two species and revealed another lineage, which was phylogenetically distinct from the others and had no evidence of gene flow with them. The presence of a river acted as a phylogeographic barrier, limiting gene flow and allowing for structuration between closely related lineages. The optimal species delimitation scenario involved secondary contact between well-established lineages. CONCLUSIONS: The rapid divergence observed in these Petunia species explains the lack of significant morphological differences, as floral diagnostic traits in species sharing the pollinators tend to evolve more slowly. This study highlights the complexity of species delimitation in recently diverged groups and emphasises the importance of genomic approaches in understanding evolutionary relationships and speciation dynamics.

11.
Insects ; 15(8)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39194810

ABSTRACT

Morphometric analyses of male genitalia are routinely used to distinguish genera and species in beetles, butterflies, and flies, but are rarely used in ants, where most morphometric analyses focus on the external morphology of the worker caste. In this work, we performed linear morphometric analysis of the male genitalia to distinguish Monomorium and Syllophopsis in Madagascar. For 80 specimens, we measured 10 morphometric characters, especially on the paramere, volsella, and penisvalvae. Three datasets were made from linear measurements: mean (raw data), the ratios of characters (ratio data), and the Removal of Allometric Variance (RAV data). The following quantitative methods were applied to these datasets: hierarchical clustering (Ward's method), unconstrained ordination methods including Principal Component Analysis (PCA), Non-Metric Multidimensional Scaling analyses (NMDS), Linear Discriminant Analysis (LDA), and Conditional Inference Trees (CITs). The results from statistical analysis show that the ratios proved to be the most effective approach for genus-level differentiation. However, the RAV method exhibited overlap between the genera. Meanwhile, the raw data facilitated more nuanced distinctions at the species level compared with the ratios and RAV approaches. The CITs revealed that the ratios of denticle length of the valviceps (SeL) to the paramere height (PaH) effectively distinguished between genera and identified key variables for species-level differentiation. Overall, this study shows that linear morphometric analysis of male genitalia is a useful data source for taxonomic delimitation.

12.
Persoonia ; 52: 44-93, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39161630

ABSTRACT

Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ in the traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversification patterns congruent with radiation. Here we propose the Ramalina decipiens group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens, Canary and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages. In order to use the Ramalina decipiens group as a model system it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which are newly developed and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry and geographic origin). We found that taxonomic diversity in the Ramalina decipiens group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics and provide a key to the group. Phylogenetic relationships among species have been reconstructed with almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi. Citation: Blázquez M, Pérez-Vargas I, Garrido-Benavent I, et al. 2024. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. Persoonia 52: 44-93. https://doi.org/10.3767/persoonia.2024.52.03 .

13.
J Theor Biol ; 595: 111927, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216590

ABSTRACT

The advent of rapid and inexpensive sequencing technologies has necessitated the development of computationally efficient methods for analyzing sequence data for many genes simultaneously in a phylogenetic framework. The coalescent process is the most commonly used model for linking the underlying genealogies of individual genes with the global species-level phylogeny, but inference under the coalescent model is computationally daunting in the typical inference frameworks (e.g., the likelihood and Bayesian frameworks) due to the dimensionality of the space of both gene trees and species trees. Here we consider estimation of the branch lengths in fixed species trees with three or four taxa, and show that these branch lengths are identifiable. We also show that for three and four taxa simple estimators for the branch lengths can be derived based on observed site pattern frequencies. Properties of these estimators, such as their asymptotic variances and large-sample distributions, are examined, and performance of the estimators is assessed using simulation. Finally, we use these estimators to develop a hypothesis test that can be used to delimit species under the coalescent model for three or four putative taxa.

14.
PeerJ ; 12: e17783, 2024.
Article in English | MEDLINE | ID: mdl-39148684

ABSTRACT

Here we present a taxonomic treatment for the Brazilian species of Syrbatus (Reitter, 1882), including the description of three new species (Syrbatus moustache Asenjo & Valois sp. nov., Syrbatus obsidian Asenjo & Valois sp. nov. and Syrbatus superciliata Asenjo & Valois sp. nov.) from the Quadrilátero Ferrífero (Minas Gerais, Brazil). In addition, we designated lectotypes for the Brazilian species of species-group 2, Syrbatus centralis (Raffray, 1898), Syrbatus hetschkoi (Reitter, 1888), Syrbatus hiatusus (Reitter, 1888), Syrbatus transversalis (Raffray, 1898), and Syrbatus trinodulus (Schaufuss, 1887), besides recognizing the holotype for Syrbatus brevispinus (Reitter, 1882), Syrbatus bubalus (Raffray, 1898), and Syrbatus grouvellei (Raffray, 1898). The mitochondrial genomes (mitogenomes) of the three new species are presented, for which we present the phylogenetic placement among Staphylinidae with previously published data.


Subject(s)
Coleoptera , Genome, Mitochondrial , Phylogeny , Animals , Coleoptera/genetics , Coleoptera/classification , Genome, Mitochondrial/genetics , Brazil , Male , Female , Species Specificity
15.
J Fish Biol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150971

ABSTRACT

Gaidropsarus mauritanicus sp. nov. is described from one specimen collected using a grab sample from the Tanoûdêrt Canyon (ca. 20° N) off Mauritania at a depth of 595 m. The new species was further observed during eight remotely operated vehicle (ROV) dives along the Mauritanian slope southwards down to the Tiguent Coral Mound Complex (~17° N) in a bathymetric range between 613 and 416 m. It can be distinguished from congeners by a combination of characteristics, including large eyes (38.1% head length [HL]), large head (25.8% standard length [SL]), elongated pelvic fins (35.7% SL), low number of vertebrae (44), and coloration (pinkish with a dorsal darker brownish hue and bright blotches along the dorsal-fin base). A species-delimitation analysis performed with available cytochrome c oxidase subunit 1 (COI) sequences affiliated to the genus Gaidropsarus additionally supported the validity of the new species. Video analyses showed a deep-water coral-associated and protection-seeking behavior, which may explain why the species has remained undescribed until now. Additional ROV footage from separate deep-water coral sites in the North Atlantic and Mediterranean Sea further highlights the ecological behavior and hidden diversity of bathyal three-bearded rocklings. Here, we additionally discuss the biogeographical distribution of all genetically verified Gaidropsarus spp. in combination with genetic data and morphological characters. G. mauritanicus sp. nov. is closely related to a species from Tasmania (43° S), a geographical point furthest among the studied samples, which may hint to an important influence of (paleo-) oceanography on the distributions of Gaidropsarus species.

16.
BMC Ecol Evol ; 24(1): 105, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095717

ABSTRACT

Even though the high plateaus of Qinghai-Tibet and Iran share many faunal elements, the historical biogeography of the species present in this area are not very well understood. We present a complete COI barcode library for Aporia Hübner and a first comprehensive phylogeny for the genus including all known species and majority of subspecies using ten available genes (COI-COII, ND1, ND5, Cytb, EF-1a, Wg, 16S, 28S-D2/D3 and 28S-D8). We then focus on A. leucodice (Eversmann, 1843) and related taxa in order to resolve some long-standing taxonomic issues in this species-group. Based on DNA sequence data as well as morphology, we raise Aporia illumina (Grum-Grshimailo 1890) stat. nov. (= pseudoillumina Tshikolovets 2021 syn. nov.) as a distinct species and designate a lectotype; synonymize Aporia leucodice leucodice Eversmann, 1843 (= A. l. morosevitshae Sheljuzhko, 1908 syn. nov.); and describe a new species, Aporia ahura sp. nov., from the Central Alborz Mountains in northern Iran.


Subject(s)
Butterflies , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Phylogeny , Animals , DNA Barcoding, Taxonomic/methods , Iran , Electron Transport Complex IV/genetics , Butterflies/genetics , Butterflies/classification , Genetic Speciation , Altitude , Female , Male
17.
Syst Biol ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180155

ABSTRACT

The multispecies coalescent (MSC) model accommodates genealogical fluctuations across the genome and provides a natural framework for comparative analysis of genomic sequence data from closely related species to infer the history of species divergence and gene flow. Given a set of populations, hypotheses of species delimitation (and species phylogeny) may be formulated as instances of MSC models (e.g., MSC for one species versus MSC for two species) and compared using Bayesian model selection. This approach, implemented in the program bpp, has been found to be prone to over-splitting. Alternatively heuristic criteria based on population parameters (such as popula- tion split times, population sizes, and migration rates) estimated from genomic data may be used to delimit species. Here we develop hierarchical merge and split algorithms for heuristic species delimitation based on the genealogical divergence index (𝑔𝑑𝑖) and implement them in a python pipeline called hhsd. We characterize the behavior of the 𝑔𝑑𝑖 under a few simple scenarios of gene flow. We apply the new approaches to a dataset simulated under a model of isolation by distance as well as three empirical datasets. Our tests suggest that the new approaches produced sensible results and were less prone to over-splitting. We discuss possible strategies for accommodating paraphyletic species in the hierarchical algorithm, as well as the challenges of species delimitation based on heuristic criteria.

18.
Zookeys ; 1209: 245-294, 2024.
Article in English | MEDLINE | ID: mdl-39175835

ABSTRACT

Species delimitation presents a significant challenge in biology, particularly in systematics. Here, an integrative approach is employed to assess the species boundaries of widely distributed Palearctic Stenodema species. Due to their diversity, wide distribution, and the absence of comprehensive morphological and molecular data for most species, revising Stenodema is both daunting and time-consuming. Our study focuses on detailed examinations of male and female genitalia, coupled with phylogenetic analyses based on two mitochondrial markers (cytochrome c oxidase subunit I and 16S rRNA) and species delimitation analyses. Eight species with wide distributions are reviewed, Stenodematrispinosa Reuter, 1904 is synonymized with S.pilosa (Jakovlev, 1889), and a lectotype for Stenodematuranica Reuter, 1904 is designated. Morphological and molecular data effectively distinguish all species, revealing distinct clades and relationships. Notably, S.calcarata and S.pilosa form a well-supported clade, while S.virens and S.turanica share a lineage with Nearctic species. Stenodemarubrinervis and S.sibirica are morphologically similar and form a distinct clade in all phylogenies. Species delimitation analyses confirm the separation of all studied species, and genetic distances suggest the potential existence of cryptic species within S.calcarata and S.pilosa. This study highlights the advantages of integrative taxonomy in delimiting species with intricate and relatively recent phylogeographic histories.

19.
Mycologia ; 116(5): 744-763, 2024.
Article in English | MEDLINE | ID: mdl-39024131

ABSTRACT

Alternaria is a large genus within Pleosporaceae and consists of fungi that have up to recently been considered to be 15 separate genera, including Ulocladium. The majority of Ulocladium species after incorporation into Alternaria were placed in three sections: Ulocladioides, Pseudoulocladium, and Ulocladium. In this study, phylogeny of 26 reference strains of 22 species and 20 Russian Ulocladium-like isolates was recovered. The partial actin gene (act), Alternaria major allergen (alta1), calmodulin (cal), glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-α (tef1) were sequenced for Russian isolates. All these fungi were examined using multilocus phylogenetic analysis according to the genealogical concordance phylogenetic species recognition (GCPSR) principle and the coalescent-based model Poisson tree processes (PTP, mPTP) and evaluated for the presence of recombination. All strains were combined into two clades that corresponded to the Pseudoulocladium and Ulocladioides sections. The Pseudoulocladium clade included four reference strains and nine local isolates and considered to be a single species, whereas the Ulocladioides section comprises 11 species, instead of 17 names previously adopted. Nine species were abolished by joining four other species. Species A. atra and A. multiformis were combined into the single species A. atra. Five species, A. brassicae-pekinensis, A. consortialis, A. cucurbitae, A. obovoidea, and A. terricola, were united in the species A. consortialis. Alternaria heterospora and A. subcucurbitae were combined into one species, A. subcucurbitae. Alternaria aspera, A. chartarum, A. concatenata, and A. septospora were combined into a single species, A. chartarum. Also, amplification with two different primer sets was performed to define mating-type locus 1 (MAT1) idiomorph. All studied isolates were heterothallic, contradicting some prior studies. Twenty Russian Ulocladium-like isolates were assigned to five species of two sections, A. atra, A. cantlous, A. chartarum, A. consortialis, and A. subcucurbitae. Species A. cantlous and A. subcucurbitae were found in Russia for the first time.


Subject(s)
Alternaria , DNA, Fungal , Genes, Mating Type, Fungal , Phylogeny , Alternaria/genetics , Alternaria/classification , Alternaria/isolation & purification , Russia , DNA, Fungal/genetics , Fungal Proteins/genetics , Molecular Sequence Data , Sequence Analysis, DNA
20.
Genome ; 67(10): 378-391, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996389

ABSTRACT

Combating wildlife crimes in South Africa requires accurate identification of traded species and their products. Diagnostic morphological characteristics needed to identify species are often lost when specimens are processed and customs officials lack the expertise to identify species. As a potential solution, DNA barcoding can be used to identify morphologically indistinguishable specimens in forensic cases. However, barcoding is hindered by the reliance on comprehensive, validated DNA barcode reference databases, which are currently limited. To overcome this limitation, we constructed a barcode library of cytochrome c oxidase subunit 1 and cytochrome b sequences for threatened and protected mammals exploited in southern Africa. Additionally, we included closely related or morphologically similar species and assessed the database's ability to identify species accurately. Published southern African sequences were incorporated to estimate intraspecific and interspecific variation. Neighbor-joining trees successfully discriminated 94%-95% of the taxa. However, some widespread species exhibited high intraspecific distances (>2%), suggesting geographic sub-structuring or cryptic speciation. Lack of reliable published data prevented the unambiguous discrimination of certain species. This study highlights the efficacy of DNA barcoding in species identification, particularly for forensic applications. It also highlights the need for a taxonomic re-evaluation of certain widespread species and challenging genera.


Subject(s)
DNA Barcoding, Taxonomic , Mammals , DNA Barcoding, Taxonomic/methods , Animals , Mammals/genetics , Mammals/classification , Electron Transport Complex IV/genetics , Phylogeny , Cytochromes b/genetics , South Africa , Species Specificity , Forensic Genetics/methods , Gene Library , Endangered Species , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL