Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters











Publication year range
1.
R Soc Open Sci ; 11(6): 240042, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39092142

ABSTRACT

The seafloor is inhabited by a large number of benthic invertebrates, and their importance in mediating carbon mineralization and biogeochemical cycles is recognized. However, the majority of fauna live below the sediment surface, so most means of survey rely on destructive sampling methods that are limited to documenting species presence rather than event driven activity and functionally important aspects of species behaviour. We have developed and tested a laboratory-based three-dimensional acoustic coring system that is capable of non-invasively visualizing the presence and activity of invertebrates within the sediment matrix. Here, we present reconstructed three-dimensional acoustic images of the sediment profile, with strong backscatter revealing the presence and position of individual benthic organisms. These data were used to train a three-dimensional convolutional neural network model and, using a combination of data augmentation and data correction techniques, we were able to identify individual species with an 88% accuracy. Combining three-dimensional acoustic coring with deep learning forms an effective and non-invasive means of providing detailed mechanistic information of in situ species-sediment interactions, opening new opportunities to quantify species-specific contributions to ecosystems.

2.
Sci Total Environ ; 948: 174794, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39009164

ABSTRACT

The invasion of non-native amphipods often leads to severe changes in the composition of aquatic communities and may also result in the local replacement of native species. Particularly, a lower risk of being preyed upon resulting from high swimming velocities can be an advantage in interspecific competition. Furthermore, as swimming velocities are ecologically important, they are often used in ecotoxicological studies to estimate effects of different stressors. However, knowledge on swimming velocities of native and non-native amphipods is still rather limited. We experimentally investigated the maximum swimming velocities of three native and three non-native amphipods via video analyses in the laboratory. Results showed that non-native species reach higher maximum swimming velocities compared to natives probably leading to a higher predation success and reduced risk of being preyed upon. Additionally, body length correlates positively with swimming velocities, except for the invader Dikerogammarus villosus. As D. villosus can be cannibalistic, the high swimming velocities of the small individuals may reduce the intraspecific predation and may increase the survival rates of smaller specimen. Hence, knowledge about the swimming velocities of species contribute to the understanding of interspecific competition among species and might support explanation approaches for the success of invasive species. Furthermore, it provides baselines for ecotoxicological studies of stressor impacts.


Subject(s)
Amphipoda , Introduced Species , Swimming , Animals , Amphipoda/physiology , Ecosystem
3.
Conserv Biol ; : e14310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842221

ABSTRACT

Climate change may diminish biodiversity; thus, it is urgent to predict how species' ranges may shift in the future by integrating multiple factors involving more taxa. Bats are particularly sensitive to climate change due to their high surface-to-volume ratio. However, few studies have considered geographic variables associated with roost availability and even fewer have linked the distributions of bats to their thermoregulation and energy regulation traits. We used species distribution models to predict the potential distributions of 12 bat species in China under current and future greenhouse gas emission scenarios (SSP1-2.6 and SSP5-8.5) and examined factors that could affect species' range shifts, including climatic, geographic, habitat, and human activity variables and wing surface-to-mass ratio (S-MR). The results suggest that Ia io, Rhinolophus ferrumequinum, and Rhinolophus rex should be given the highest priority for conservation in future climate conservation strategies. Most species were predicted to move northward, except for I. io and R. rex, which moved southward. Temperature seasonality, distance to forest, and distance to karst or cave were the main environmental factors affecting the potential distributions of bats. We found significant relationships between S-MR and geographic distribution, current potential distribution, and future potential distribution in the 2050s. Our work highlights the importance of analyzing range shifts of species with multifactorial approaches, especially for species traits related to thermoregulation and energy regulation, to provide targeted conservation strategies.


Patrones y correlaciones de los cambios potenciales en la distribución de las especies de murciélago de China en el contexto del cambio climático Resumen El cambio climático puede disminuir la biodiversidad, por lo que es urgente pronosticar cómo puede cambiar en el futuro la distribución de las especies mediante la integración de múltiples factores que involucren a más taxones. Los murciélagos son particularmente sensibles al cambio climático debido a que tienen una gran proporción superficie­volumen. Sin embargo, hay pocos estudios que han considerado las variables asociadas con la disponibilidad de nidos y son todavía menos los que han conectado la distribución de los murciélagos con sus rasgos de termorregulación y regulación de energía. Usamos modelos de distribución de especies para pronosticar la distribución potencial de doce especies de murciélago en China bajo escenarios actuales y futuros de emisión de gases de efecto invernadero (SSP1­2.6 y SSP5­8.5) y analizamos los factores que podrían afectar el cambio en la distribución de las especies, incluyendo las variables climáticas, geográficas, de hábitat y de actividad humana y la proporción entre la superficie del ala y la masa (P S­M). Los resultados sugieren que Ia io, Rhinolophus ferrumequinum y R. rex deberían ser la mayor prioridad de conservación para las estrategias de conservación climáticas en el futuro. Pronosticamos que la mayoría de las especies se desplazarían al norte, a excepción de I. io y R. rex, que se desplazarían hacia el sur. Los principales factores que afectaron la distribución potencial de los murciélagos fueron la estacionalidad de la temperatura, la distancia al bosque y la distancia a la cueva o al karst. Encontramos una relación significativa entre la P S­M y la distribución geográfica, la distribución potencial actual y la distribución potencial para la década de 2050. Nuestra investigación destaca la importancia del análisis de los cambios de distribución de las especies con enfoques multifactoriales, especialmente para los rasgos de especie relacionados con la termorregulación y la regulación de energía, para proporcionar estrategias de conservación focalizadas.

4.
Plant Divers ; 46(3): 353-361, 2024 May.
Article in English | MEDLINE | ID: mdl-38798734

ABSTRACT

Many different factors, such as species traits, socio-economic factors, geographical and environmental factors, can lead to specimen collection preference. This study aims to determine whether grassland specimen collection in China is preferred by species traits (i.e., plant height, flowering and fruiting period), environmental range (i.e., the temperature and precipitation range) and geographical range (i.e., distribution range and altitudinal range). Ordinary least squares models and phylogenetic generalized linear mixed models were used to analyze the relationships between specimen number and the explanatory variables. Random Forest models were then used to find the most parsimonious multivariate model. The results showed that interannual variation in specimen number between 1900 and 2020 was considerable. Specimen number of these species in southeast China was notably lower than that in northwest China. Environmental range and geographical range of species had significant positive correlations with specimen number. In addition, there were relatively weak but significant associations between specimen number and species trait (i.e., plant height and flowering and fruiting period). Random Forest models indicated that distribution range was the most important variable, followed by flowering and fruiting period, and altitudinal range. These findings suggest that future floristic surveys should pay more attention to species with small geographical range, narrow environmental range, short plant height, and short flowering and fruiting period. The correction of specimen collection preference will also make the results of species distribution model, species evolution and other works based on specimen data more accurate.

5.
Oecologia ; 205(1): 149-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38796612

ABSTRACT

Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee-flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.


Subject(s)
Body Size , Diet , Animals , Bees , Montana , Flowers
6.
Environ Int ; 188: 108764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788418

ABSTRACT

A strong need exists for broadly applicable nano-QSARs, capable of predicting toxicological outcomes towards untested species and nanomaterials, under different environmental conditions. Existing nano-QSARs are generally limited to only a few species but the inclusion of species characteristics into models can aid in making them applicable to multiple species, even when toxicity data is not available for biological species. Species traits were used to create classification- and regression machine learning models to predict acute toxicity towards aquatic species for metallic nanomaterials. Afterwards, the individual classification- and regression models were stacked into a meta-model to improve performance. Additionally, the uncertainty and limitations of the models were assessed in detail (beyond the OECD principles) and it was investigated whether models would benefit from the addition of more data. Results showed a significant improvement in model performance following model stacking. Investigation of model uncertainties and limitations highlighted the discrepancy between the applicability domain and accuracy of predictions. Data points outside of the assessed chemical space did not have higher likelihoods of generating inadequate predictions or vice versa. It is therefore concluded that the applicability domain does not give complete insight into the uncertainty of predictions and instead the generation of prediction intervals can help in this regard. Furthermore, results indicated that an increase of the dataset size did not improve model performance. This implies that larger dataset sizes may not necessarily improve model performance while in turn also meaning that large datasets are not necessarily required for prediction of acute toxicity with nano-QSARs.


Subject(s)
Quantitative Structure-Activity Relationship , Uncertainty , Nanostructures/toxicity , Animals , Machine Learning , Aquatic Organisms/drug effects
7.
Ecology ; 105(6): e4314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710667

ABSTRACT

Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.


Subject(s)
Food Chain , Rivers , Animals , Energy Metabolism , Climate Change
8.
Animals (Basel) ; 14(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473199

ABSTRACT

Insectivorous bats are generalist predators and can flexibly respond to fluctuations in the distribution and abundance of insect prey. To better understand the effects of bats on arthropod pests, the types of pests eaten by bats and the response of bats to insect prey need to be determined. In this study, we performed DNA metabarcoding to examine prey composition and pest diversity in the diets of four insectivorous species of bats (Hipposideros armiger, Taphozous melanopogon, Aselliscus stoliczkanus, and Miniopterus fuliginosus). We evaluated the correlation between bat activity and insect resources and assessed dietary niche similarity and niche breadth among species and factors that influence prey consumption in bats. We found that the diets of these bats included arthropods from 23 orders and 200 families, dominated by Lepidoptera, Coleoptera, and Diptera. The proportion of agricultural pests in the diet of each of the four species of bats exceeded 40% and comprised 713 agricultural pests, including those that caused severe economic losses. Bats responded to the availability of insects. For example, a higher abundance of insects, especially Lepidoptera, and a higher insect diversity led to an increase in the duration of bat activity. In areas with more abundant insects, the number of bat passes also increased. The dietary composition, diversity, and niches differed among species and were particularly significant between H. armiger and T. melanopogon; the dietary niche width was the greatest in A. stoliczkanus and the narrowest in H. armiger. The diet of bats was correlated with their morphological and echolocation traits. Larger bats preyed more on insects in the order Coleoptera, whereas the proportion of bats consuming insects in the order Lepidoptera increased as the body size decreased. Bats that emitted echolocation calls with a high peak frequency and duration preyed more on insects in the order Mantodea. Our results suggest that dietary niche differentiation promotes the coexistence of different bat species and increases the ability of bats to consume insect prey and agricultural pests. Our findings provide greater insights into the role of bats that prey on agricultural pests and highlight the importance of combining bat conservation with integrated pest management.

9.
Glob Chang Biol ; 30(1): e17157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273525

ABSTRACT

While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.


Subject(s)
Ecosystem , Sharks , Animals , Climate Change , Fertility , Fishes
10.
Glob Chang Biol ; 30(1): e17064, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273565

ABSTRACT

Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche ) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N-61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche ) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.


Subject(s)
Climate Change , Forests , Ecosystem , Europe , Flowers , Temperature , Plants
11.
Animals (Basel) ; 13(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835637

ABSTRACT

The first arrival dates of 31 species of migrant birds in the Tatarstan Republic of Russia were monitored for the 34-year period from 1989-2022. Trends in first arrival date were evaluated using regression against the year value. Patterns in arrival data with respect to species traits (habitat, migration distance, body weight, etc.) were evaluated using redundancy analysis. Relationships between first arrival dates and Tatarstan temperatures were also evaluated using regression methods of first-arrival date on monthly mean temperatures. Almost all (28 of 31) species revealed a significantly earlier migration arrival date; however, associations between arrival patterns and species traits were equivocal. Warmer temperatures were significantly associated with earlier arrival in 26 of the 31 species, but the relationship was insufficient to explain the average 11-day advance in species. For these species and in this location only the timing and location of arrival are well recorded; the exact wintering areas and migration routes, and the timing of these phases are less well understood. When these become better known, an investigation of the influence of environmental conditions (including temperature) on departure timing and passage timing and speed is recommended.

12.
Trends Ecol Evol ; 38(12): 1115-1116, 2023 12.
Article in English | MEDLINE | ID: mdl-37770290

Subject(s)
Fires , Animals , Ecosystem
13.
New Phytol ; 239(6): 2389-2403, 2023 09.
Article in English | MEDLINE | ID: mdl-37438886

ABSTRACT

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Subject(s)
Ecosystem , Tracheophyta , Genome Size , Citizenship , Ploidies , Introduced Species , DNA
14.
Sci Total Environ ; 892: 164553, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37269987

ABSTRACT

Chemical reversal from acidification has been progressing in European freshwaters since the late 1980s, responding to successful control of atmospheric pollution by acidifying emissions. However, biological recovery is often delayed after improvements in water composition. We studied macroinvertebrate recovery from acidification in eight glacial lakes in the Bohemian Forest (central Europe) between 1999 and 2019. The chemical composition of these lakes reflects a complex of environmental changes, dominated by a very steep decline in acid deposition and, currently, by elevated nutrient leaching following climate-induced tree dieback within their catchments. Temporal trends in species richness, abundance, species traits and community composition were evaluated with regard to water chemistry, littoral habitat properties and fish colonisation. The results showed accelerated recovery of macroinvertebrates following two decades of gradual improvement in water composition and slowly progressing biological rehabilitation. We observed a significant increase in macroinvertebrate species richness and abundance, coupled with distinct changes in community composition, the extent of changes varying between lakes, reflecting different littoral habitat properties (vegetated vs. stony) and water chemistry. Overall, the communities shifted toward more specialised (grazers, filterers, and phytophilous species) and acid-tolerant taxa at the expense of detritivorous, eurytopic and acid-resistant taxa. Where fish reappeared, open-water taxa declined greatly. Compositional changes were likely driven by the combined effects of water chemistry reversal, rehabilitation of habitat conditions and fish colonisation. Despite favourable trends, communities in recovering lakes still lack several biotic elements, particularly less vagile, acid-sensitive taxa and specialised herbivores known from the regional species pool. It is expected that future progress in lake recovery will be further promoted or inhibited by stochastic colonisation or disturbance events.


Subject(s)
Environmental Monitoring , Lakes , Animals , Lakes/chemistry , Environmental Monitoring/methods , Ecosystem , Fishes , Water , Hydrogen-Ion Concentration , Invertebrates
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220130, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37305909

ABSTRACT

Naive multi-host communities include species that may differentially maintain, transmit and amplify novel pathogens; therefore, we expect species to fill distinct roles during infectious disease emergence. Characterizing these roles in wildlife communities is challenging because most disease emergence events are unpredictable. Here, we used field-collected data to investigate how species-specific attributes influenced the degree of exposure, probability of infection, and pathogen intensity, during the emergence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in a highly diverse tropical amphibian community. Our findings confirmed that ecological traits commonly evaluated as correlates of decline were positively associated with infection prevalence and intensity at the species level during the outbreak. We identified key hosts that disproportionally contributed to transmission dynamics in this community and found a signature of phylogenetic history in disease responses associated with increased pathogen exposure via shared life-history traits. Our findings establish a framework that could be applied in conservation efforts to identify key species driving disease dynamics under enzootics before reintroducing amphibians back into their original communities. Reintroductions of supersensitive hosts that are unable to overcome infections will limit the success of conservation programmes by amplifying the disease at the community level. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Subject(s)
Biological Evolution , Life History Traits , Animals , Phylogeny , Disease Outbreaks/veterinary , Amphibians
16.
Sci Total Environ ; 889: 164278, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37211117

ABSTRACT

Climate warming can lead to a replacement of species that favour cold temperatures by species that favour warm temperatures. However, the implications of such thermic shifts for the functioning of ecosystems remain poorly understood. Here, we used stream macroinvertebrate biological and ecological traits to quantify the relative contribution of cold, intermediate and warm temperature-adapted taxa to changes in community functional diversity (FD) using a dataset of 3781 samples collected in Central Europe over 25 years, from 1990 to 2014. Our analyses indicated that functional diversity of stream macroinvertebrate communities increased over the study period. This gain was driven by a net 39 % increase in the richness of taxa that favour intermediate temperatures, which comprise the highest share in the community, and to a 97 % increase in the richness of taxa that favour warm temperatures. These warm temperature-adapted taxa displayed a distinct and more diverse suite of functional traits compared to the cold temperature-adapted group and thus contributed disproportionately to local FD on a per-taxon basis. At the same time, taxonomic beta-diversity declined significantly within each thermal group, in association with increasing local taxon richness. This study shows that over recent decades, small low-mountain streams in Central Europe have experienced a process of thermophilization and increasing functional diversity at local scales. However, a progressive homogenisation occurred at the regional scale, with communities converging towards similar taxonomic composition. As the reported increase in local functional diversity can be attributed mostly to the intermediate temperature-adapted taxa and a few expanding warm temperature-adapted taxa, these patterns could mask more subtle loss of sensitive cold temperature-adapted taxa with irreplaceable functional traits. In light of increasing climate warming, preservation of cold habitat refuges, should be considered a priority in river conservation.


Subject(s)
Ecosystem , Invertebrates , Animals , Rivers , Europe , Temperature
17.
Ecol Evol ; 12(11): e9503, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36407904

ABSTRACT

Macroecological studies describe large-scale diversity patterns through analyses of species distribution patterns and allows us to elucidate how species differing in ecology, physical requirements, and life histories are distributed in a multidimensional space. These patterns of distributions can be explained by vegetation, and climatic factors, and are determined by historical and current factors. The continuous accumulation of information on the distribution patterns of species is essential to understand the history and evolution of the biota. In this study, we aimed to identify functional and evolutionary drivers that explain the geographic patterns of vertical stratification. We compiled morphological, ecological, and distribution data of 140 species of Chacoan snakes and constructed null models to map their geographic pattern. We used a range of environmental variables to assess which drivers are influencing these biogeographic patterns. Lastly, we used evolutionary data to build the first map of the phylogenetic regions of Chacoan snakes. We found a latitudinal pattern, with a marked verticality in the snake assemblies in the Chaco. Verticality and long-tailed species richness increased in areas with high stratified habitats and stable temperature. Fossoriality is driven mainly by soil conditions, especially soils with fewer sand particles and less stratified habitat. Phylogenetic regions in the Chaco showed a marked latitudinal pattern, like that observed in the geographic pattern of verticality. The distribution pattern of Chacoan snakes also reflects their evolutionary history, with a marked phylogenetic regionalization.

18.
Ecol Appl ; 32(8): e2713, 2022 12.
Article in English | MEDLINE | ID: mdl-36196040

ABSTRACT

As fragmented landscapes become increasingly common around the world, managing the spatial arrangement of landscape elements (i.e., landscape configuration) may help to promote the conservation of biodiversity. However, the relative effects of landscape configuration on different dimensions of biodiversity across species assemblages are largely unknown. Thus, a key challenge consists in understanding when it is necessary to focus on landscape configuration, in addition to landscape composition, to achieve multifunctional landscapes. We tested the effects of landscape composition (the percentage of tree cover and built infrastructure) and landscape configuration (degree of fragmentation) on landscape-level species richness and different metrics of functional diversity of urban birds. We collected data on different bird guilds (nectarivores/frugivores, insectivores) from Brisbane, Australia. Using structural equation models, we found that landscape structure (landscape composition and configuration) affected functional diversity via two main pathways: (1) through effects of landscape composition, mediated by landscape configuration (indirect effects), and (2) through direct ("independent") effects of landscape composition and configuration, filtering species with extreme trait values. Our results show that landscape-level species richness declined with the extent of built infrastructure, but patterns of trait diversity did not necessarily correlate with this variable. Landscape configuration had a stronger mediating effect on some metrics of the functional diversity of insectivores than on the functional diversity of frugivores/nectarivores. In addition, fragmentation increased the effects of built infrastructure for some traits (body size and dispersal capacity), but not for others (habitat plasticity and foraging behavior). These results suggest that differential approaches to managing landscape structure are needed depending on whether the focus is on protecting functional diversity or species richness and what the target guild is. Managing landscape fragmentation in areas with high levels of built infrastructure is important if the objective is to protect insectivore species with uncommon traits, even if it is not possible to preserve high levels of species richness. However, if the target is to enhance both functional diversity and species richness of multiple guilds, the focus should be on improving composition through the reduction of negative effects of built infrastructure, rather than promoting specific landscape configurations in growing cities.


Subject(s)
Birds , Moths , Animals , Biodiversity , Ecosystem , Trees
19.
Glob Chang Biol ; 28(19): 5667-5682, 2022 10.
Article in English | MEDLINE | ID: mdl-35771083

ABSTRACT

Urbanization is a major contributor to the loss of biodiversity. Its rapid progress is mostly at the expense of natural ecosystems and the species inhabiting them. While some species can adjust quickly and thrive in cities, many others cannot. To support biodiversity conservation and guide management decisions in urban areas, it is important to find robust methods to estimate the urban affinity of species (i.e. their tendency to live in urban areas) and understand how it is associated with their traits. Since previous studies mainly relied on discrete classifications of species' urban affinity, often involving inconsistent assessments or variable parameters, their results were difficult to compare. To address this issue, we developed and evaluated a set of continuous indices that quantify species' urban affinity based on publicly available occurrence data. We investigated the extent to which a species' position along the urban affinity gradient depends on the chosen index and how this choice affects inferences about the relationship between urban affinity and a set of morphological, sensory and functional traits. While these indices are applicable to a wide range of taxonomic groups, we examined their performance using a global set of 356 bat species. As bats vary in sensitivity to anthropogenic disturbances, they provide an interesting case study. We found that different types of indices resulted in different rankings of species on the urban affinity spectrum, but this had little effect on the association of traits with urban affinity. Our results suggest that bat species predisposed to urban life are characterized by low echolocation call frequencies, relatively long call durations, small body size and flexibility in the selection of the roost type. We conclude that simple indices are appropriate and practical, and propose to apply them to more taxa to improve our understanding of how urbanization favours or filters species with particular traits.


Subject(s)
Chiroptera , Animals , Biodiversity , Cities , Ecosystem , Urbanization
20.
Ecol Evol ; 12(3): e8648, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342580

ABSTRACT

Understanding the risk of local extinction of a species is vital in conservation biology, especially now when anthropogenic disturbances and global warming are severely changing natural habitats. Local extinction risk depends on species traits, such as its geographical range size, fresh body mass, dispersal ability, length of flying period, life history variation, and how specialized it is regarding its breeding habitat. We used a phylogenetic approach because closely related species are not independent observations in the statistical tests. Our field data contained the local extinction risk of 31 odonate (dragonflies and damselflies) species from Central Finland. Species relatedness (i.e., phylogenetic signal) did not affect local extinction risk, length of flying period, nor the geographical range size of a species. However, we found that closely related species were similar in hind wing length, length of larval period, and habitat of larvae. Both phylogenetically corrected (PGLS) and uncorrected (GLM) analysis indicated that the geographical range size of species was negatively related to local extinction risk. Contrary to expectations, habitat specialist species did not have higher local extinction rates than habitat generalist species nor was it affected by the relatedness of species. As predicted, species' long larval period increased, and long wings decreased the local extinction risk when evolutionary relatedness was controlled. Our results suggest that a relatively narrow geographical range size is an accurate estimate for a local extinction risk of an odonate species, but the species with long life history and large habitat niche width of adults increased local extinction risk. Because the results were so similar between PGLS and GLM methods, it seems that using a phylogenetic approach does not improve predicting local extinctions.

SELECTION OF CITATIONS
SEARCH DETAIL