Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.426
Filter
1.
Iran J Basic Med Sci ; 27(9): 1134-1147, 2024.
Article in English | MEDLINE | ID: mdl-39055866

ABSTRACT

Objectives: The skin serves as the main defense barrier, protecting against injuries, and preventing infection and water loss. Consequently, wound healing and skin regeneration are crucial aspects of wound management. A novel hydrogel scaffold was developed by incorporating carboxymethyl cellulose (CMC) and gelatin (Gel) hydrogels cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) containing Sphingosine 1-phosphate (S1P). This hydrogel is applied topically to treat acute wounds and is covered with a human acellular amniotic membrane (hAAM) as a secondary dressing. Materials and Methods: The scaffold was subjected to in vitro cell viability, red blood cell hemolysis, blood clotting index, and in vivo assays. Real-time PCR was implemented to verify the expression of genes involved in skin wounds. The physical and chemical properties of the scaffolds were also tested using weight loss, swelling ratio, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and mechanical tensile analysis. Results: The synthetic scaffold is biocompatible as evidenced by the high percentage of 3T3 cell viability (127%) after 72 hr. Additionally, excellent hemocompatibility with a low hemolytic effect (2.26%) was observed. Our in vivo wound healing assay demonstrated that CMC/Gel/S1P/hAAM wound dressing led to faster wound healing in treated rats compared to the control group over 14.Also, the mechanical tests showed that the amniotic membrane and the hAAM had very different Young's modulus and elongation at break values. Conclusion: This study demonstrates the effectiveness of the CMC/Gel/EDC hydrogel with S1P as a wound dressing. Additionally, hAAM exhibits excellent characteristics as a protective layer for the treatment of acute wounds.

2.
Neurol Int ; 16(4): 709-730, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39051215

ABSTRACT

In Alzheimer's disease (AD) pathology, the accumulation of amyloid-beta (Aß), a main component of senile plaques, activates glial cells and causes neuroinflammation. Excessive neuroinflammation results in neuronal dropouts and finally produces the symptoms of AD. Recent studies suggest that disorder in sphingosine-1-phosphate (S1P) metabolism, especially the decreased expression of sphingosine kinase (SK)1, followed by the reduction in the amount of S1P, can be a promotive factor in AD onset. Thus, we explored the possibility that dysregulated S1P metabolism affects AD through the altered function in glial cells. We evaluated the effect of PF-543, a pharmacological inhibitor of SK1, on the inflammatory responses by lipopolysaccharide (LPS)-activated glial cells, microglia, and astrocytes. The treatment with PF-543 decreased the intracellular S1P content in glial cells. The PF-543 treatment enhanced the nitric oxide (NO) production in the LPS-treated neuron/glia mixed culture. Furthermore, we found that the augmented production of NO and reactive oxygen species (ROS) in the PF-543-treated astrocytes affected the microglial inflammatory responses through humoral factors in the experiment using an astrocyte-conditioned medium. The PF-543 treatment also decreased the microglial Aß uptake and increased the number of injured neurons in the Aß-treated neuron/glia mixed culture. These results suggest that a decrease in the glial S1P content can exacerbate neuroinflammation and neurodegeneration through altered glial cell functions.

3.
Article in English | MEDLINE | ID: mdl-39034736

ABSTRACT

Neurolipids comprise a diverse class of bioactive lipids that include molecules capable of activating G protein­coupled receptors, thereby inducing systemic effects that contribute to the maintenance of homeostasis. Dementia, a non­specific brain disorder characterized by a common set of signs and symptoms, usually arises subsequent to brain injuries or diseases and is often associated with the aging process. Individuals affected by dementia suffer from the disruption of several neurotransmitter and neuromodulatory systems, among which neurolipids play an important role, including the endocannabinoid, lysophosphatidic acid and sphingosine 1­phosphate systems. In this review, we present an overview of the most recent and pertinent findings regarding the involvement of these neurolipidic systems in dementia, including data from a wide range of both in vitro and in vivo experiments as well as clinical trials.

4.
FASEB J ; 38(14): e23827, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012295

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has had a significant worldwide impact, affecting millions of people. COVID-19 is characterized by a heterogenous clinical phenotype, potentially involving hyperinflammation and prolonged tissue damage, although the exact underlying mechanisms are yet to be fully understood. Sphingolipid metabolites, which govern cell survival and proliferation, have emerged as key players in inflammatory signaling and cytokine responses. Given the complex metabolic pathway of sphingolipids, this study aimed to understand their potential role in the pathogenesis of COVID-19. We conducted a comprehensive examination of sphingolipid modulations across groups classified based on disease severity, incorporating a time-course in serum and urine samples. Several sphingolipids, including sphingosine, lactosylceramide, and hexosylceramide, emerged as promising indicators of COVID-19 severity, as validated by correlation analyses conducted on both serum and urine samples. Other sphingolipids, such as sphingosine 1-phosphate, ceramides, and deoxy-dihydroceramides, decreased in both COVID-19 patients and individuals with non-COVID infectious diseases. This suggests that these sphingolipids are not specifically associated with COVID-19 but rather with pathological conditions caused by infectious diseases. Our analysis of urine samples revealed elevated levels of various sphingolipids, with changes dependent on disease severity, potentially highlighting the acute kidney injury associated with COVID-19. This study illuminates the intricate relationship between disturbed sphingolipid metabolism, COVID-19 severity, and clinical factors. These findings provide valuable insights into the broader landscape of inflammatory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Sphingolipids , COVID-19/metabolism , COVID-19/blood , COVID-19/virology , Humans , Sphingolipids/metabolism , Sphingolipids/blood , Male , Female , Middle Aged , Adult , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Aged , Biomarkers/blood , Biomarkers/metabolism
5.
FEBS Lett ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965662

ABSTRACT

Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.

6.
Actas Dermosifiliogr ; 2024 Jul 05.
Article in English, Spanish | MEDLINE | ID: mdl-38972584

ABSTRACT

The use of disease-modifying therapies (DMT) has led to a paradigm shift in the management of multiple sclerosis. A comprehensive narrative review was conducted through an extensive literature search including Medline and Google Scholar to elucidate the link between DMT and the propensity of cutaneous malignancies. Sphingosine-1-phosphate receptor modulators, such as fingolimod and siponimod are associated with a higher risk of basal cell carcinoma (BCC), but not squamous cell carcinoma, or melanoma. The associated physiopathological mechanisms are not fully understood. Alemtuzumab and cladribine show isolated associations with skin cancer. Regarding other DMT, no increased risk has ever been found. Given the evidence currently available, it is of paramount importance to advocate for necessary dermatological assessments that should be individualized to the risk profile of each patient. Nonetheless, additional prospective studies are still needed to establish efficient dermatological follow-up protocols.

7.
Plants (Basel) ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065521

ABSTRACT

Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose-effect manner. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation.

8.
Biomed Pharmacother ; 177: 117123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004062

ABSTRACT

Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.


Subject(s)
Artemisinins , Benzoquinones , Cell Proliferation , Lung Neoplasms , Molecular Docking Simulation , Phosphotransferases (Alcohol Group Acceptor) , Thymol , Humans , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Benzoquinones/pharmacology , Cell Proliferation/drug effects , Thymol/pharmacology , Cell Line, Tumor , A549 Cells , Artemisinins/pharmacology , Reactive Oxygen Species/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Membrane Potential, Mitochondrial/drug effects , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology
9.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062926

ABSTRACT

Typical hemolytic uremic syndrome (HUS) can occur as a severe systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli. Its pathology can be induced by Stx types, resulting in toxin-mediated damage to renal barriers, inflammation, and the development of acute kidney injury (AKI). Two sphingosine kinase (SphK) isozymes, SphK1 and SphK2, have been shown to be involved in barrier maintenance and renal inflammatory diseases. Therefore, we sought to determine their role in the pathogenesis of HUS. Experimental HUS was induced by the repeated administration of Stx2 in wild-type (WT) and SphK1 (SphK1-/-) or SphK2 (SphK2-/-) null mutant mice. Disease severity was evaluated by assessing clinical symptoms, renal injury and dysfunction, inflammatory status and sphingolipid levels on day 5 of HUS development. Renal inflammation and injury were found to be attenuated in the SphK2-/- mice, but exacerbated in the SphK1-/- mice compared to the WT mice. The divergent outcome appeared to be associated with oppositely altered sphingolipid levels. This study represents the first description of the distinct roles of SphK1-/- and SphK2-/- in the pathogenesis of HUS. The identification of sphingolipid metabolism as a potential target for HUS therapy represents a significant advance in the field of HUS research.


Subject(s)
Acute Kidney Injury , Hemolytic-Uremic Syndrome , Mice, Knockout , Phosphotransferases (Alcohol Group Acceptor) , Animals , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Mice , Hemolytic-Uremic Syndrome/pathology , Hemolytic-Uremic Syndrome/genetics , Disease Models, Animal , Sphingolipids/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Inbred C57BL , Shiga Toxin 2 , Gene Deletion , Male
10.
J Leukoc Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976501

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease that is still incurable. Nowadays, a variety of new drugs are being developed to prevent excessive inflammation and halt neurodegeneration. Among these are the inhibitors of Bruton's tyrosine kinase (BTK). Being indispensable for B cells, this enzyme became an appealing therapeutic target for autoimmune diseases. Recognizing the emerging importance of BTK in myeloid cells, we investigated the impact of upcoming BTK inhibitors on neutrophil functions. Although adaptive immunity in MS has been thoroughly studied, unanswered questions about the pathogenesis can be addressed by studying the effects of candidate MS drugs on innate immune cells such as neutrophils, previously overlooked in MS. In this study, we used three BTK inhibitors (evobrutinib, fenebrutinib and tolebrutinib), and found that they reduce neutrophil activation by the bacterial peptide N-formylmethionyl-leucyl-phenylalanine and the chemokine interleukin 8/CXCL8. Furthermore, they diminished the production of reactive oxygen species and release of neutrophil extracellular traps. Additionally, the production of CXCL8 and interleukin-1ß in response to inflammatory stimuli was decreased. Inhibitory effects of the drugs on neutrophil activation were not related to toxicity. Instead, BTK inhibitors prolonged neutrophil survival in an inflammatory environment. Finally, treatment with BTK inhibitors decreased neutrophil migration towards CXCL8 in a Boyden chamber assay but not in a trans endothelial set-up. Also, in vivo CXCL1-induced migration was unaffected by BTK inhibitors. Collectively, this study provides novel insights into the impact of BTK inhibitors on neutrophil functions, thereby holding important implications for autoimmune or hematological diseases where BTK is crucial.

11.
Methods Mol Biol ; 2816: 161-174, 2024.
Article in English | MEDLINE | ID: mdl-38977598

ABSTRACT

G-protein-coupled receptors (GPCRs) are hepta-helical transmembrane proteins that mediate various intracellular signaling events in response to their specific ligands including many lipid mediators. Although analyses of GPCR molecular interactions are pivotal to understanding diverse intracellular signaling events, affinity purification of interacting proteins by a conventional co-immunoprecipitation method is challenging due to the hydrophobic nature of GPCRs and their dynamic molecular interactions. Proximity labeling catalyzed by a TurboID system is a powerful technique for defining the molecular interactions of target proteins in living cells. TurboID and miniTurbo (a modified version of TurboID) are engineered biotin ligases that biotinylate neighboring proteins in a promiscuous manner. When fused with a target protein and expressed in living cells, TurboID or miniTurbo mediates the biotin labeling of the proteins with close proximity to the target protein, allowing efficient purification of the biotinylated proteins followed by a shot-gun proteomic analysis. In this chapter, we describe a step-by-step protocol for the labeling of GPCR neighboring proteins by TurboID or miniTurbo, purification of the biotin-labeled proteins, and subsequent sample preparation for proteomic analysis. We utilized S1PR1 as a model GPCR, a receptor for a bioactive lipid molecule sphingosine 1-phosphate (S1P) that plays various roles in physiological and pathological conditions. This analysis pipeline enables the mapping of interacting proteins of lipid GPCRs in living cells.


Subject(s)
Biotinylation , Proteomics , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Proteomics/methods , Biotin/metabolism , Biotin/chemistry , HEK293 Cells , Protein Binding , Staining and Labeling/methods , Sphingosine-1-Phosphate Receptors/metabolism , Lipids/chemistry
12.
World J Gastroenterol ; 30(22): 2902-2919, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947290

ABSTRACT

BACKGROUND: Remarkable progress over the last decade has equipped clinicians with many options in the treatment of inflammatory bowel disease. Clinicians now have the unique opportunity to provide individualized treatment that can achieve and sustain remission in many patients. However, issues of primary non-response (PNR) and secondary loss of response (SLOR) to non-tumour necrosis factor inhibitor (TNFi) therapies remains a common problem. Specific issues include the choice of optimization of therapy, identifying when dose optimization will recapture response, establishing optimal dose for escalation and when to switch therapy. AIM: To explores the issues of PNR and SLOR to non-TNFi therapies. METHODS: This review explores the current evidence and literature to elucidate management options in cases of PNR/SLOR. It will also explore potential predictors for response following SLOR/PNR to therapies including the role of therapeutic drug monitoring (TDM). RESULTS: In the setting of PNR and loss of response to alpha-beta7-integrin inhibitors and interleukin (IL)-12 and IL-23 inhibitors dose optimization is a reasonable option to capture response. For Janus kinase inhibitors dose optimization can be utilized to recapture response with loss of response. CONCLUSION: The role of TDM in the setting of advanced non-TNFi therapies to identify patients who require dose optimization and as a predictor for clinical remission is not yet established and this remains an area that should be addressed in the future.


Subject(s)
Drug Monitoring , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Drug Monitoring/methods , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/administration & dosage , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/administration & dosage , Treatment Failure , Remission Induction/methods , Treatment Outcome , Drug Substitution
13.
Front Immunol ; 15: 1380975, 2024.
Article in English | MEDLINE | ID: mdl-38953034

ABSTRACT

Background: Icanbelimod (formerly CBP-307) is a next-generation S1PR modulator, targeting S1PR1. In this first-in-human study, icanbelimod was investigated in healthy men in Australia. Methods: Participants were randomized 3:1, double-blind, to icanbelimod or placebo in four single-dose cohorts (0.1 mg, 0.25 mg, 0.5 mg [n=8 per cohort], 2.5 mg [n=4]) or for 28-days once-daily treatment in two cohorts (0.15 mg, 0.25 mg [n=8 per cohort]). Participants in the 0.25-mg cohort received 0.1 mg on Day 1. Treatments were administered orally after fasting; following one-week washout, icanbelimod was administered after breakfast in the 0.5-mg cohort. Results: Icanbelimod exposure increased rapidly and dose-dependently with single and multiple dosing (Tmax 4-7 hours). Lymphocyte counts decreased rapidly after single (-11%, 0.1 mg; -40%, 0.25 mg; -71%, 0.5 mg; -77%, 2.5 mg) and multiple doses (-49%, 0.15 mg; -75%, 0.25 mg), and recovered quickly, 7 days after dosing. After single-dose 0.5 mg, although a high-fat breakfast versus fasting did not affect maximal decrease, lymphocyte counts tended to be lower after breakfast across most timepoints up to 72 hours. Twenty-eight participants (63.6%) experienced mainly mild treatment-emergent adverse events (TEAEs). After single-dose icanbelimod, the most common TEAEs were headache (28.6%, n=6) and dizziness (19.0%, n=4). Three participants experienced transient bradycardia, with one serious, following single-dose 2.5 mg icanbelimod. After multiple-dose icanbelimod, the most common TEAEs were headache (50.0%, n=6) and lymphopenia (41.7%, n=5), and two participants withdrew due to non-serious TEAEs. Up-titration attenuated heart rate reductions. Conclusion: Icanbelimod was well-tolerated up to 0.5 mg and effectively reduced lymphocyte counts. Clinical trial registration: ClinicalTrials.gov, identifier NCT02280434.b.


Subject(s)
Healthy Volunteers , Sphingosine 1 Phosphate Receptor Modulators , Humans , Male , Adult , Australia , Double-Blind Method , Young Adult , Sphingosine 1 Phosphate Receptor Modulators/pharmacokinetics , Sphingosine 1 Phosphate Receptor Modulators/adverse effects , Sphingosine 1 Phosphate Receptor Modulators/administration & dosage , Middle Aged , Sphingosine-1-Phosphate Receptors , Lymphocyte Count , Adolescent
14.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-39030066

ABSTRACT

Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.


Subject(s)
Pseudomonas aeruginosa , Sphingosine , Staphylococcus aureus , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Microbial Viability/drug effects , Animals
15.
Neurobiol Dis ; 199: 106585, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955289

ABSTRACT

Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.


Subject(s)
Aldehyde-Lyases , Lysophospholipids , Sphingosine , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/antagonists & inhibitors , Humans , Animals , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
16.
Front Mol Biosci ; 11: 1372783, 2024.
Article in English | MEDLINE | ID: mdl-39035697

ABSTRACT

Introduction: Hexavalent chromium [Cr (VI)] has been identified as a human carcinogen and environmental pollutant capable of affecting multiple systems in the human body. However, the specific mechanisms by which Cr (VI) affects the human nervous system remain unclear. Objective: Following confirmation of Cr (VI)'s toxic effects on rat astrocytes, this study explores the metabolites and associated metabolic pathways of rat astrocytes under different doses of Cr (VI) exposure. Methods: Cell viability was assessed using CCK8 assays, intracellular reactive oxygen species (ROS) levels were measured using DCFH-DA fluorescent probes, intracellular 8-hydroxydeoxyguanosine (8-OHdG) content was determined by Elisa, mitochondrial membrane potential was observed using JC-1 probes, and key metabolites were identified through untargeted metabolomics analysis. Results: With increasing Cr (VI) doses, significant decreases in cell viability were observed in the 4, 8, and 16 mg/L dose groups (p < 0.05). Elevated levels of ROS and 8-OHdG, increased caspase-3 activity, and significant reductions in mitochondrial membrane potential were observed in the 2 and 4 mg/L dose groups (p < 0.05). Untargeted metabolomics analysis revealed Cr (VI)'s impact on key metabolites such as sphingosine and methionine. Enrichment analysis of KEGG pathways highlighted the critical roles of sphingolipid metabolism and the methionine-cysteine cycle in the effects of Cr (VI) on rat astrocytes. Conclusion: Our study underscores the potential neuro-health risks associated with environmental and occupational exposure to Cr (VI) and provides new perspectives and directions for investigating neurotoxic mechanisms.

17.
Hear Res ; 451: 109091, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39067415

ABSTRACT

Sgms1 encodes sphingomyelin synthase 1, an enzyme in the sphingosine-1-phosphate signalling pathway, and was previously reported to underlie hearing impairment in the mouse. A new mouse allele, Sgms1tm1a, unexpectedly showed normal Auditory Brainstem Response thresholds. We found that the Sgms1tm1a mutation led to incomplete knockdown of transcript to 20 % of normal values, which was enough to support normal hearing. The Sgms1tm1b allele was generated by knocking out exon 7, leading to a complete lack of detectable transcript in the inner ear. Sgms1tm1b homozygotes showed largely normal auditory brainstem response thresholds at first, followed by progressive loss of sensitivity until they showed severe impairment at 6 months old. The endocochlear potential was consistently reduced in Sgms1tm1b mutants at 3, 4 and 8 weeks old, to around 80 mV compared with around 120 mV in control littermates. The stria vascularis showed a characteristic irregularity of marginal cell surfaces and patchy loss of Kcnq1 expression at their apical membrane, and expression analysis of the lateral wall suggested that marginal cells were the most likely initial site of dysfunction in the mutants. Finally, significant association of auditory thresholds with DNA markers within and close to the human SGMS1 gene were found in the 1958 Birth Cohort, suggesting that SGMS1 variants may play a role in the range of hearing abilities in the human population.

18.
J Lipid Res ; 65(8): 100587, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950680

ABSTRACT

Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited LD biogenesis, content, and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation, and dysfunction, as well as ER stress. These changes coincided with the upregulation of proapoptotic ceramides but were independent of lipid peroxidation rate. Also in human EndoC-ßH1 beta-cells, suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size and influences beta-cell sensitivity to FFA.

19.
Methods Mol Biol ; 2816: 35-40, 2024.
Article in English | MEDLINE | ID: mdl-38977586

ABSTRACT

Sphingolipids, including sphingosine and sphinganine, are one of the major classes of lipids. They serve as constituents of cell membranes and lipid rafts and aid in the performance of cell-cell communication and adhesion. Abnormal levels of sphingolipids in the aqueous humor can indicate impaired sphingolipid metabolism and associated ocular pathologies. Sphingolipids can be extracted from the aqueous humor by the methyl-tert-butyl ether (MTBE) lipid extraction method and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). This chapter describes a modified protocol for an MTBE lipid extraction from the aqueous humor, followed by analysis with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS).


Subject(s)
Aqueous Humor , Sphingosine , Humans , Aqueous Humor/metabolism , Aqueous Humor/chemistry , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry/methods , Methyl Ethers , Signal Transduction , Sphingolipids/analysis , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/analysis , Tandem Mass Spectrometry/methods
20.
Inflamm Bowel Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899786

ABSTRACT

BACKGROUND: Biomarkers offer potential alternatives to endoscopies in monitoring ulcerative colitis (UC) progression and therapeutic response. This post hoc analysis of the ELEVATE UC clinical program assessed potential predictive values of fecal calprotectin (fCAL) and high-sensitivity C-reactive protein (hsCRP) as biomarkers and associated responses to etrasimod, an oral, once-daily, selective sphingosine 1-phosphate (S1P)1,4,5 receptor modulator for the treatment of moderately to severely active UC, in 2 phase 3 clinical trials. METHODS: In ELEVATE UC 52 and ELEVATE UC 12, patients were randomized 2:1 to 2 mg of etrasimod once daily or placebo for 52 or 12 weeks, respectively. Fecal calprotectin/hsCRP differences between responders and nonresponders for efficacy end points (clinical remission, clinical response, endoscopic improvement-histologic remission [EIHR]) were assessed by Wilcoxon P-values. Sensitivity and specificity were presented as receiver operating characteristics (ROC) curves with area under the curve (AUC). RESULTS: In ELEVATE UC 52 and ELEVATE UC 12, 289 and 238 patients received etrasimod and 144 and 116 received placebo, respectively. Baseline fCAL/hsCRP concentrations were generally balanced. Both trials had lower week-12 median fCAL levels in week-12 responders vs nonresponders receiving etrasimod for clinical remission, clinical response, and EIHR (all P < .001), with similar trends for hsCRP levels (all P < .01). For etrasimod, AUCs for fCAL/hsCRP and EIHR were 0.85/0.74 (week 12; ELEVATE UC 52), 0.83/0.69 (week 52; ELEVATE UC 52), and 0.80/0.65 (week 12; ELEVATE UC 12). CONCLUSIONS: Fecal calprotectin/hsCRP levels decreased with etrasimod treatment; ROC analyses indicated a prognostic correlation between fCAL changes during induction and short-/long-term treatment response.


We show associations between fecal calprotectin (fCAL) and high-sensitivity C-reactive protein (hsCRP) levels with efficacy outcomes among patients receiving 2 mg of etrasimod once daily, and that fCAL levels may be an early indicator of the achievement of long-term efficacy end point achievement.

SELECTION OF CITATIONS
SEARCH DETAIL