Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
J Mol Biol ; : 168746, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147127

ABSTRACT

The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.

2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617365

ABSTRACT

The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5 and SPT6 as necessary for repression with the SPT4 subunit acting as a bridge connecting TPL to SPT5 and SPT6. We also discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved in early transcription initiation events. These findings were validated in yeast and plants through multiple assays, including a novel method to analyze conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate rapid onset of transcription once repression is relieved.

3.
EMBO Mol Med ; 16(3): 523-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374466

ABSTRACT

Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.


Subject(s)
Huntington Disease , Animals , Mice , Brain/metabolism , Corpus Striatum , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Phenotype , RNA, Messenger/genetics
4.
Mol Cell ; 83(22): 3972-3999, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37922911

ABSTRACT

The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.


Subject(s)
Neurodegenerative Diseases , RNA Polymerase II , Animals , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/genetics , Neurodegenerative Diseases/genetics , Transcription, Genetic , Gene Expression Regulation , Aging/genetics , Genes, Developmental
5.
Cell Physiol Biochem ; 57(5): 395-408, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37876219

ABSTRACT

Suppressor of Ty homolog-5 (SPT5) discovered in the yeast mutant screens as a suppressor of mutation caused by the insertion of the Transposons of yeast (Ty) element along with SPT4, with which it forms a holoenzyme complex known as DRB sensitivity-inducing factor (DSIF) and plays an essential role in the regulation of transcription. SPT5 is a highly conserved protein across all three domains of life and performs critical functions in transcription, starting from promoter-proximal pausing to termination. We also highlight the emerging role of SPT5 in other non-canonical functions, such as the regulation of post-translational modifications (PTM) and the transcriptional regulation of non-coding genes. Also, in brief, we highlight the clinical implications of SPT5 dysregulation.


Subject(s)
Nuclear Proteins , Saccharomyces cerevisiae Proteins , Nuclear Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
6.
Mol Cell ; 83(18): 3253-3267.e7, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37683646

ABSTRACT

RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , Humans , RNA Polymerase II/genetics , DNA , Transcription, Genetic , Exonucleases , Peptide Elongation Factors , Saccharomyces cerevisiae/genetics , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins/genetics
7.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37586368

ABSTRACT

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Subject(s)
Gene Expression Regulation , RNA Polymerase II , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cell Differentiation , Cell Cycle , Transcription, Genetic , Nuclear Proteins/metabolism , Transcriptional Elongation Factors/genetics
8.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511602

ABSTRACT

Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.


Subject(s)
Drosophila Proteins , Receptors, Steroid , Animals , Drosophila/genetics , Drosophila/metabolism , Ecdysone , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Ecdysterone/pharmacology , Ecdysterone/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Transcriptional Activation , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism
9.
J Biol Chem ; 299(9): 105106, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517697

ABSTRACT

Promoter proximal pausing of RNA polymerase II (Pol II) is a critical transcriptional regulatory mechanism in metazoans that requires the transcription factor DRB sensitivity-inducing factor (DSIF) and the inhibitory negative elongation factor (NELF). DSIF, composed of Spt4 and Spt5, establishes the pause by recruiting NELF to the elongation complex. However, the role of DSIF in pausing beyond NELF recruitment remains unclear. We used a highly purified in vitro system and Drosophila nuclear extract to investigate the role of DSIF in promoter proximal pausing. We identified two domains of Spt5, the KOW4 and NGN domains, that facilitate Pol II pausing. The KOW4 domain promotes pausing through its interaction with the nascent RNA while the NGN domain does so through a short helical motif that is in close proximity to the non-transcribed DNA template strand. Removal of this sequence in Drosophila has a male-specific dominant negative effect. The alpha-helical motif is also needed to support fly viability. We also show that the interaction between the Spt5 KOW1 domain and the upstream DNA helix is required for DSIF association with the Pol II elongation complex. Disruption of the KOW1-DNA interaction is dominant lethal in vivo. Finally, we show that the KOW2-3 domain of Spt5 mediates the recruitment of NELF to the elongation complex. In summary, our results reveal additional roles for DSIF in transcription regulation and identify specific domains important for facilitating Pol II pausing.

10.
J Biol Chem ; 299(8): 104969, 2023 08.
Article in English | MEDLINE | ID: mdl-37380080

ABSTRACT

Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that is regulated by multiple facilitators, such as Rad26, and repressors, such as Rpb4 and Spt4/Spt5. How these factors interplay with each other and with core RNA polymerase II (RNAPII) remains largely unknown. In this study, we identified Rpb7, an essential RNAPII subunit, as another TCR repressor and characterized its repression of TCR in the AGP2, RPB2, and YEF3 genes, which are transcribed at low, moderate, and high rates, respectively. The Rpb7 region that interacts with the KOW3 domain of Spt5 represses TCR largely through the same common mechanism as Spt4/Spt5, as mutations in this region mildly enhance the derepression of TCR by spt4Δ only in the YEF3 gene but not in the AGP2 or RPB2 gene. The Rpb7 regions that interact with Rpb4 and/or the core RNAPII repress TCR largely independently of Spt4/Spt5, as mutations in these regions synergistically enhance the derepression of TCR by spt4Δ in all the genes analyzed. The Rpb7 regions that interact with Rpb4 and/or the core RNAPII may also play positive roles in other (non-NER) DNA damage repair and/or tolerance mechanisms, as mutations in these regions can cause UV sensitivity that cannot be attributed to derepression of TCR. Our study reveals a novel function of Rpb7 in TCR regulation and suggests that this RNAPII subunit may have broader roles in DNA damage response beyond its known function in transcription.


Subject(s)
DNA Repair , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription, Genetic , DNA Repair/genetics , Peptide Elongation Factors/genetics , Receptors, Antigen, T-Cell/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
EMBO Rep ; 24(3): e55699, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36629390

ABSTRACT

Release of promoter-proximally paused RNA Pol II into elongation is a tightly regulated and rate-limiting step in metazoan gene transcription. However, the biophysical mechanism underlying pause release remains unclear. Here, we demonstrate that the pausing and elongation regulator SPT5 undergoes phase transition during transcriptional pause release. SPT5 per se is prone to form clusters. The disordered domain in SPT5 is required for pause release and gene activation. During early elongation, the super elongation complex (SEC) induces SPT5 transition into elongation droplets. Depletion of SEC increases SPT5 pausing clusters. Furthermore, disease-associated SEC mutations impair phase properties of elongation droplets and transcription. Our study suggests that SEC-mediated SPT5 phase transition might be essential for pause release and early elongation and that aberrant phase properties could contribute to transcription abnormality in diseases.


Subject(s)
RNA Polymerase II , Transcriptional Elongation Factors , Animals , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , RNA Polymerase II/metabolism , Transcriptional Activation , Transcription, Genetic
12.
Plant J ; 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703573

ABSTRACT

Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.

13.
Cell Rep ; 41(13): 111865, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577375

ABSTRACT

How transcription is regulated as development commences is fundamental to understand how the transcriptionally silent mature gametes are reprogrammed. The embryonic genome is activated for the first time during zygotic genome activation (ZGA). How RNA polymerase II (Pol II) and productive elongation are regulated during this process remains elusive. Here, we generate genome-wide maps of Serine 5 and Serine 2-phosphorylated Pol II during and after ZGA in mouse embryos. We find that both phosphorylated Pol II forms display similar distributions across genes during ZGA, with typical elongation enrichment of Pol II emerging after ZGA. Serine 2-phosphorylated Pol II occurs at genes prior to their activation, suggesting that Serine 2 phosphorylation may prime gene expression. Functional perturbations demonstrate that CDK9 and SPT5 are major ZGA regulators and that SPT5 prevents precocious activation of some genes. Overall, our work sheds molecular insights into transcriptional regulation at the beginning of mammalian development.


Subject(s)
RNA Polymerase II , Zygote , Mice , Animals , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Zygote/metabolism , Phosphorylation , Genome , Serine/metabolism , Transcriptional Activation , Gene Expression Regulation, Developmental , Mammals/metabolism
14.
Mol Cell ; 82(19): 3632-3645.e4, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206739

ABSTRACT

The pause-release model of transcription proposes that 40-100 bases from the start site RNA Pol II pauses, followed by release into productive elongation. Pause release is facilitated by the PTEFb phosphorylation of the RNA Pol II elongation factor, Spt5. We mapped paused polymerases by eNET-seq and found frequent pausing in zones that extend ∼0.3-3 kb into genes even when PTEFb is inhibited. The fraction of paused polymerases or pausing propensity declines gradually over several kb and not abruptly as predicted for a discrete pause-release event. Spt5 depletion extends pausing zones, suggesting that it promotes the maturation of elongation complexes to a low-pausing state. The expression of mutants after Spt5 depletion showed that phosphomimetic substitutions in the CTR1 domain diminished pausing throughout genes. By contrast, mutants that prevent the phosphorylation of the Spt5 RNA-binding domain strengthened pausing. Thus, distinct Spt5 phospho-isoforms set the balance between pausing and elongation.


Subject(s)
RNA Polymerase II , Transcriptional Elongation Factors , Peptide Elongation Factors/metabolism , Phosphorylation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
15.
Proc Natl Acad Sci U S A ; 119(40): e2207332119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161924

ABSTRACT

Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.


Subject(s)
Cullin Proteins , DNA Damage , Elongin , Nuclear Proteins , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , Elongin/genetics , Elongin/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism
16.
Transcription ; 13(1-3): 53-69, 2022.
Article in English | MEDLINE | ID: mdl-35876486

ABSTRACT

Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.


Subject(s)
Chromosomal Proteins, Non-Histone , Transcriptional Elongation Factors , Animals , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Proteins/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics
17.
EMBO J ; 41(5): e109783, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35102600

ABSTRACT

Nucleosomes are disrupted transiently during eukaryotic transcription, yet the displaced histones must be retained and redeposited onto DNA, to preserve nucleosome density and associated histone modifications. Here, we show that the essential Spt5 processivity factor of RNA polymerase II (Pol II) plays a direct role in this process in budding yeast. Functional orthologues of eukaryotic Spt5 are present in archaea and bacteria, reflecting its universal role in RNA polymerase processivity. However, eukaryotic Spt5 is unique in having an acidic amino terminal tail (Spt5N) that is sandwiched between the downstream nucleosome and the upstream DNA that emerges from Pol II. We show that Spt5N contains a histone-binding motif that is required for viability in yeast cells and prevents loss of nucleosomal histones within actively transcribed regions. These findings indicate that eukaryotic Spt5 combines two essential activities, which together couple processive transcription to the efficient capture and re-deposition of nucleosomal histones.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , RNA Polymerase II/genetics , Transcription, Genetic/genetics , Transcriptional Elongation Factors/genetics , Nucleosomes/genetics , Protein Binding/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
18.
Cell Rep ; 36(13): 109755, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34592154

ABSTRACT

Spt4 is a transcription elongation factor with homologs in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, and yet the in vivo function of Spt4 is unclear. Here, we assess the precise position of Spt4 during transcription and the consequences of the loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription, and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.


Subject(s)
Nuclear Proteins/metabolism , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcriptional Elongation Factors/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptional Elongation Factors/genetics
19.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34480849

ABSTRACT

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Subject(s)
Cullin Proteins/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/metabolism , Animals , Cell Survival , Chromosomal Proteins, Non-Histone/metabolism , Cullin Proteins/chemistry , Fibroblasts/metabolism , Humans , Indoleacetic Acids/chemistry , Mice , Nedd4 Ubiquitin Protein Ligases/chemistry , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/chemistry , Proteome , Proteomics/methods , Ubiquitin-Protein Ligases/chemistry , Valosin Containing Protein/chemistry , Valosin Containing Protein/metabolism
20.
Mol Cell ; 81(21): 4425-4439.e6, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34534457

ABSTRACT

Transcription progression is governed by multitasking regulators including SPT5, an evolutionarily conserved factor implicated in virtually all transcriptional steps from enhancer activation to termination. Here we utilize a rapid degradation system and reveal crucial functions of SPT5 in maintaining cellular and chromatin RNA polymerase II (Pol II) levels. Rapid SPT5 depletion causes a pronounced reduction of paused Pol II at promoters and enhancers, distinct from negative elongation factor (NELF) degradation resulting in short-distance paused Pol II redistribution. Most genes exhibit downregulation, but not upregulation, accompanied by greatly impaired transcription activation, altered chromatin landscape at enhancers, and severe Pol II processivity defects at gene bodies. Phosphorylation of an SPT5 linker at serine 666 potentiates pause release and is antagonized by Integrator-PP2A (INTAC) targeting SPT5 and Pol II, while phosphorylation of the SPT5 C-terminal region links to 3' end termination. Our findings position SPT5 as an essential positive regulator of global transcription.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Animals , Antigens, Differentiation, B-Lymphocyte , Chromatin/chemistry , Chromatin/metabolism , Fibroblasts/metabolism , Genome , HEK293 Cells , Histocompatibility Antigens Class II , Humans , Mice , Mutation , Phosphorylation , Promoter Regions, Genetic , RNA-Seq , Regulatory Sequences, Nucleic Acid , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL