Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Environ Res ; 262(Pt 2): 119901, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241858

ABSTRACT

In this study, a peracetic acid (PAA) alone process was systematically demonstrated to give a high efficiency in the selective degradation of sulfonamide antibiotics (SAs). The employment of scavengers and probe compounds in this process demonstrates the predominant role of PAA in direct oxidation, and the limited role of carbon-centered radicals (R-O•) in the degradation of representative SA, sulfamethazine (SMT). The process also exhibits high tolerance towards solution pH and competing anions in wastewater, indicating its applicability in enhancing the biodegradation of SAs in wastewater. Furthermore, the relationships between the observed rate constants (kobs) and the molecule descriptors for ten SA compounds are demonstrated through the assessment of structure-activity relationships, calculated from density functional theory (DFT). This study gives new insights into the selectivity, performance and mechanism of PAA direct-oxidation in SA degradation.

2.
Food Chem ; 460(Pt 2): 140570, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089022

ABSTRACT

Residue of sulfamethazine (SMZ), a typical short-acting drug to prevent bacterial infections, in food is a threat to human health. A ternary heterogeneous metal-organic framework hybrid (Zn/Fe-MOF@PDANSs) of Zn-TCPP-MOF, MIL-101 (Fe) and polydopamine nanoparticles (PDANSs) was proposed to establish an aptasensor for the sensitive and selective detection of SMZ. In this sensor, Zn-TCPP-MOF and FAM emitted fluorescence at 609 nm and 523 nm, respectively, and the fluorescence of FAM-ssDNA could be quenched when it was adsorbed on the surface of MOF hybrid. In the presence of SMZ, the fluorescence of FAM-ssDNA recovered due to the dropping from MOF hybrid, while the fluorescence of MOF hybrid remained. With this strategy, a wide concentration range and high sensitivity of SMZ were detection. And the ternary Zn/Fe-MOF@PDANSs sensor exhibited more excellent performance than binary Zn/Fe-MOF aptasensor. In addition, the sensor showed pleasurable selectivity, and was utilized for SMZ determination in authentic chicken and pork samples, implying the fascinating potential in practical application.


Subject(s)
Aptamers, Nucleotide , Chickens , Food Contamination , Indoles , Metal-Organic Frameworks , Nanoparticles , Polymers , Sulfamethazine , Metal-Organic Frameworks/chemistry , Indoles/chemistry , Sulfamethazine/analysis , Sulfamethazine/chemistry , Polymers/chemistry , Animals , Nanoparticles/chemistry , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Swine , Biosensing Techniques/instrumentation , Fluorescence , Spectrometry, Fluorescence
3.
Future Med Chem ; 16(12): 1205-1218, 2024.
Article in English | MEDLINE | ID: mdl-38989986

ABSTRACT

Aim: The purpose of this study is to design and synthesize a new series of sulfamethazine derivatives as potent neuraminidase inhibitors. Materials & methods: A sulfamethazine lead compound, ZINC670537, was first identified by structure-based virtual screening technique, then some novel inhibitors X1-X10 based on ZINC670537 were designed and synthesized. Results: Compound X3 exerts the most good potency in inhibiting the wild-type H5N1 NA (IC50 = 6.74 µM) and the H274Y mutant NA (IC50 = 21.09 µM). 150-cavity occupation is very important in determining activities of these inhibitors. The sulfamethazine moiety also plays an important role. Conclusion: Compound X3 maybe regard as a good anti-influenza candidate to preform further study.


[Box: see text].


Subject(s)
Antiviral Agents , Drug Design , Enzyme Inhibitors , Influenza A Virus, H5N1 Subtype , Neuraminidase , Sulfamethazine , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Sulfamethazine/pharmacology , Sulfamethazine/chemical synthesis , Sulfamethazine/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/enzymology , Structure-Activity Relationship , Humans , Molecular Structure , Molecular Docking Simulation
4.
Environ Pollut ; 358: 124532, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38996991

ABSTRACT

Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.


Subject(s)
Fluorenes , Soil Pollutants , Soil , Sulfamethazine , Soil/chemistry , Soil Microbiology , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Polycyclic Aromatic Hydrocarbons
5.
Environ Pollut ; 357: 124405, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38906409

ABSTRACT

Offshore aquaculture's explosive growth improves the public food chain while also unavoidably adding new pollutants to the environment. Consequently, the protection of coastal marine eco-systems depends on the efficient treatment of wastewater from marine aquaculture. For the sulfamethazine (SMZ) of representative sulfonamides and total organic pollutants removal utilizing in-situ high salinity, this work has established an inventive and systematic treatment process coupled with iron-electrode electrochemical and ultrafiltration. Additionally, the activated dithionite (DTN) was being used in the electrochemical and ultrafiltration processes with electricity/varivalent iron (FeII/FeIII) and ceramic membrane (CM), respectively, indicated by the notations DTN@iron-electrode/EO-CM. Quenching experiments and ESR detection have identified plenty of reactive species including SO4·-, ·OH, 1O2, and O2·-, for the advanced treatment. In addition, the mass spectrometry (MS) and the Gaussian simulation calculation for these primary reaction sites revealed the dominate SMZ degradation mechanisms, including cleavage of S-N bond, hydroxylation, and Smile-type rearrangement in DTN@iron-electrode/EO process. The DTN@iron-electrode/EO effluent also demonstrated superior membrane fouling mitigation in terms of the CM process, owing to its higher specific flux. XPS and SEM confirmed the reducing membrane fouling, which showed the formation of a loose and porous cake layer. This work clarified diverse reactive species formation and detoxification with DTN@iron-electrode/EO system and offers a sustainable and efficient process for treating tailwater from coastal aquaculture.


Subject(s)
Aquaculture , Ceramics , Iron , Oxidation-Reduction , Sulfamethazine , Wastewater , Water Pollutants, Chemical , Aquaculture/methods , Water Pollutants, Chemical/chemistry , Ceramics/chemistry , Wastewater/chemistry , Iron/chemistry , Sulfamethazine/chemistry , Electrodes , Waste Disposal, Fluid/methods , Membranes, Artificial , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
6.
J Environ Sci Health B ; 59(7): 425-436, 2024.
Article in English | MEDLINE | ID: mdl-38847499

ABSTRACT

Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.


Subject(s)
Anti-Infective Agents , Hydrogen-Ion Concentration , Soil Pollutants , Sulfamethazine , Sulfamethazine/analysis , Sulfamethazine/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Anti-Infective Agents/analysis , Anti-Infective Agents/chemistry , Chromatography, Liquid , Salinity
7.
Food Chem ; 454: 139756, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797097

ABSTRACT

A high-performance fluorescent "turn-on" aptasensor (Eu-MOFs@SMZ-Apt) for sulfamethazine (SMZ) determination was designed using dual-emitting europium metal-organic frameworks (Eu-MOFs) as a signal transducer and an amplifier. Eu-MOFs featuring dual emission peaks (430 nm and 620 nm) were first prepared via a facile self-assembly strategy employing Eu (III) ions and 2-aminoterephthalic acid as precursors. The high-affinity aptamer was bonded with Eu-MOFs to form Eu-MOFs@SMZ-Apt through the amidation reaction. Benefiting from the integration of inherent virtues from Eu-MOFs and aptamer, the Eu-MOFs@SMZ-Apt-based sensor allowed sensitive and selective determination of SMZ with good linear relationships in a range of 1.4-40 ng mL-1 and a low detection line (0.379 ng mL-1). This sensor was successfully applied to the determination of trace SMZ in real samples with satisfactory recoveries (86.47-113.52%) and a relative standard deviation (<6.51). Consequently, the Eu-MOFs@SMZ-Apt ratiometric fluorescence sensor furnishes new possibilities for the accurate detection of various pollutants in food.


Subject(s)
Aptamers, Nucleotide , Europium , Food Contamination , Metal-Organic Frameworks , Sulfamethazine , Europium/chemistry , Metal-Organic Frameworks/chemistry , Sulfamethazine/analysis , Sulfamethazine/chemistry , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Limit of Detection , Fluorescence , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals
8.
Food Chem ; 448: 139089, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38518446

ABSTRACT

Self-assembled Eu-dipeptide (tryptophan-phenylalanine) microparticles with multi-emission fluorescence was prepared and modified with a single-stranded DNA corresponding to the sulfamethazine (SMZ) adapter (Eu-PMPs@cDNA). Aptamer-functionalized magnetic Fe3O4 (MNPs@aptamer) was used to specifically bind the target SMZ. Using Eu-PMPs@cDNA as fluorescent signal probe and MNPs@aptamer as catcher, a noncompetitive fluorescence sensing strategy was developed for determination of SMZ with good sensitivity, accuracy, selectivity, and stability. Under the optimized conditions, fluorescence increases linearly in the 0-20 ng/mL SMZ concentration range, and the detection limit is 0.014 ng/mL. The fluorescence sensing method was applied to analysis of water and fish muscle samples, and recoveries ranged from 81.78 to 119.46 % with relative standard deviations below 4.2 %. This study offered a reliable and sensitive fluorescence sensing strategy for SMZ determination in food samples, which owns great potential for wide-ranging application in harmful compounds assay by simply changing the type of aptamer and its complementary single-stranded DNA.

9.
Bioresour Technol ; 399: 130598, 2024 May.
Article in English | MEDLINE | ID: mdl-38493935

ABSTRACT

A sulfamethazine (SM2) degrading strain, Achromobacter mucicolens JD417, was isolated from sulfonamide-contaminated sludge using gradient acclimation. Optimal SM2 degradation conditions were pH 7, 36 °C, and 5 % inoculum, achieving a theoretical maximum degradation rate of 48 % at 50 ppm SM2. Cell growth followed the Haldane equation across different SM2 concentrations. Whole-genome sequencing of the strain revealed novel functional annotations, including a sulfonamide resistance gene (sul4) encoding dihydropteroate synthase, two flavin-dependent monooxygenase genes (sadA and sadB) crucial for SM2 degradation, and unique genomic islands related to metabolism, pathogenicity, and resistance. Comparative genomics analysis showed good collinearity and homology with other Achromobacter species exhibiting organics resistance or degradation capabilities. This study reveals the novel molecular resistance and degradation mechanisms and genetic evolution of an SM2-degrading strain, providing insights into the bioremediation of sulfonamide-contaminated environments.


Subject(s)
Achromobacter , Sulfamethazine , Sulfamethazine/metabolism , Achromobacter/genetics , Achromobacter/metabolism , Sulfonamides , Multigene Family , Sulfanilamide
10.
Environ Sci Pollut Res Int ; 31(11): 16497-16510, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321275

ABSTRACT

In this study, nickel-cobalt co-modified stainless steel mesh (Ni-Co@SSM) was prepared and used as the biocathode in microbial electrolysis cell (MEC) for sulfamethazine (SMT) degradation. The optimal electrochemical performance of the Ni-Co@SSM was obtained at the electrodeposition time of 600 s, electrodeposition current density of 20 mA cm-2, and nickel-cobalt molar ratio of 1:2. The removal of SMT in MEC with the Ni-Co@SSM biocathode (MEC-Ni-Co@SSM) was 82%, which increased by 30% compared with the conventional anaerobic reactor. Thirteen intermediates were identified and the potential degradation pathways of SMT were proposed. Proteobacteria, Firmicutes, Patescibacteria, Chloroflexi, Bacteroidetes, and Euryarchaeota are the dominant bacteria at the phylum level in the MEC-Ni-Co@SSM, which are responsible for SMT metabolism. Due to the electrical stimulation, there was an increase in the abundance of the metabolic function and the genetic information processing. This work provides valuable insight into utilizing MECs for effective treatment of antibiotic-containing wastewater.


Subject(s)
Nickel , Sulfamethazine , Nickel/analysis , Sulfamethazine/metabolism , Electrodes , Electrolysis , Wastewater , Bacteria/metabolism
11.
Microorganisms ; 12(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38399785

ABSTRACT

The development of antibiotics was a turning point in the history of medicine; however, their misuse and overuse have contributed to the current global epidemic of antibiotic resistance. According to epidemiological studies, early antibiotic exposure increases the risk of immunological and metabolic disorders. This study investigated the effects of exposure to different doses of sulfamethazine (SMZ) on offspring mice and compared the effects of exposure to SMZ on offspring mice in prenatal and early postnatal periods and continuous periods. Furthermore, the effects of SMZ exposure on the gut microbiota of offspring mice were analyzed using metagenome. According to the results, continuous exposure to high-dose SMZ caused weight gain in mice. IL-6, IL-17A, and IL-10 levels in the female offspring significantly increased after high-dose SMZ exposure. In addition, there was a significant gender difference in the impact of SMZ exposure on the gut microbiota of offspring: Continuous high-dose SMZ exposure significantly decreased the relative abundance of Ligilactobacillus murinus, Limosilactobacillus reuteri, Lactobacillus johnsonii, and Bifidobacterium pseudolongum (p < 0.05) in female offspring mice; however, these significant changes were not observed in male offspring mice.

12.
Nanomaterials (Basel) ; 14(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392744

ABSTRACT

In the fight against antibiotic resistance, which is rising to dangerously high levels worldwide, new strategies based on antibiotic-conjugated biocompatible polymers bound to magnetic nanoparticles that allow the drug to be manipulated and delivered to a specific target are being proposed. Here, we report the direct surface engineering of nontoxic iron oxide nanoparticles (IONs) using biocompatible dextran (Dex) covalently linked to ß-cyclodextrin (ß-CD) with the ability to form non-covalent complexes with silver-sulfamethazine (SMT-Ag). To achieve a good interaction of ß-CD-modified dextran with the surface of the nanoparticles, it was functionalized with diphosphonic acid (DPA) that provides strong binding to Fe atoms. The synthesized polymers and nanoparticles were characterized by various methods, such as nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic absorption spectroscopy (AAS), dynamic light scattering (DLS), etc. The resulting magnetic ION@DPA-Dex-ß-CD-SMT-Ag nanoparticles were colloidally stable in water and contained 24 µg of antibiotic per mg of the particles. When tested for in vitro antimicrobial activity on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (yeast Candida albicans and mold Aspergillus niger), the particles showed promising potential.

13.
J Hazard Mater ; 468: 133792, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368685

ABSTRACT

Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.


Subject(s)
Communicable Diseases , Disinfectants , Humans , Soil , Anti-Bacterial Agents/toxicity , Manure/microbiology , Genes, Bacterial , Disinfectants/toxicity , Disinfectants/analysis , Soil Microbiology , Bacteria/genetics , Sulfamethazine
14.
Water Res ; 253: 121307, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38377930

ABSTRACT

Although diffusion gradient in thin-film technique (DGT) has realized the in-situ sampling Sulfamethazine (SMT), the traditional DGT devices cannot be served as sensing devices but in-situ sampling devices. Here we report a recyclable surface enhanced Raman scattering (SERS) responsive DGT sensing device (recyclable SERS-DGT Sensing Device) capable of in-situ sensing of SMT in water. This is achieved by innovatively utilizing a recyclable SERS responsive liquid suspension of Au nanoparticles supported on g-C3N4 (Au@g-C3N4NS) as DGT binding phase. Au@g-C3N4NS is synthesized via in-situ growth method and embed in DGT binding phase, which exhibits good SERS activity, aqueous stability recyclable and adsorption performance. The SERS-DGT Sensing Device is valid for measuring SMT under a wide range of conditions (i.e., deployment time 24∼180 h, concentrations range of 1.031∼761.9 ng mL-1, pH 5∼9, ionic strength 0.0001∼0.05 mol L-1 NaCl, DOM concentrations 0∼100 mg L-1, four recycles). Furthermore, substrate combined with DGT binding phase, can integrate the sampling, pretreatment and SERS detection of SMT, which can be recycled, improving the reliability and efficiency of environmental monitoring. In this article, recyclable SERS-DGT Sensing Device, a platform for recyclable in-situ sensing of antibiotics, holds great potential for environmental monitoring.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Water , Sulfamethazine , Gold , Reproducibility of Results , Environmental Monitoring/methods , Diffusion , Water Pollutants, Chemical/analysis
15.
Chemosphere ; 346: 140501, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303378

ABSTRACT

Veterinary antibiotics and estrogens are excreted in livestock waste before being applied to agricultural lands as fertilizer, resulting in contamination of soil and adjacent waterways. The objectives of this study were to 1) investigate the degradation kinetics of the VAs sulfamethazine and lincomycin and the estrogens estrone and 17ß-estradiol in soil mesocosms, and 2) assess the effect of the phytochemical DIBOA-Glu, secreted in eastern gamagrass (Tripsacum dactyloides) roots, on antibiotic degradation due to the ability of DIBOA-Glu to facilitate hydrolysis of atrazine in solution assays. Mesocosm soil was a silt loam representing a typical claypan soil in portions of Missouri and the Central United States. Mesocosms (n = 133) were treated with a single target compound (antibiotic concentrations at 125 ng g-1 dw, estrogen concentrations at 1250 ng g-1 dw); a subset of mesocosms treated with antibiotics were also treated with DIBOA-Glu (12,500 ng g-1 dw); all mesocosms were kept at 60% water-filled pore space and incubated at 25 °C in darkness. Randomly chosen mesocosms were destructively sampled in triplicate for up to 96 days. All targeted compounds followed pseudo first-order degradation kinetics in soil. The soil half-life (t0.5) of sulfamethazine ranged between 17.8 and 30.1 d and ranged between 9.37 and 9.90 d for lincomycin. The antibiotics results showed no significant differences in degradation kinetics between treatments with or without DIBOA-Glu. For estrogens, degradation rates of estrone (t0.5 = 4.71-6.08 d) and 17ß-estradiol (t0.5 = 5.59-6.03 d) were very similar; however, results showed that estrone was present as a metabolite in the 17ß-estradiol treated mesocosms and vice-versa within 24 h. The antibiotics results suggest that sulfamethazine has a greater potential to persist in soil than lincomycin. The interconversion of 17ß-estradiol and estrone in soil increased their overall persistence and sustained soil estrogenicity. This study demonstrates the persistence of these compounds in a typical claypan soil representing portions of the Central United States.


Subject(s)
Estrone , Soil Pollutants , Estrone/analysis , Anti-Bacterial Agents , Soil , Sulfamethazine , Soil Pollutants/analysis , Estradiol/analysis , Estrogens/metabolism , Lincomycin
16.
Environ Res ; 250: 118559, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38412912

ABSTRACT

Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.


Subject(s)
Agave , Charcoal , Sulfamethazine , Water Pollutants, Chemical , Adsorption , Sulfamethazine/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Agave/chemistry , Water Purification/methods
17.
Aquat Toxicol ; 267: 106813, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183774

ABSTRACT

Nanoplastics can interact with antibiotics, altering their bioavailability and the ensuing toxicity in marine organisms. It is reported that plain polystyrene (PS) nanoplastics decrease the bioavailability and adverse effects of sulfamethazine (SMZ) on the gut microbiota in Oryzias melastigma. However, the influence of surface functional groups on the combined effects with SMZ remains largely unknown. In this study, adult O. melastigma were fed diet amended with 4.62 mg/g SMZ and 3.65 mg/g nanoplastics (i.e., plain PS, PS-COOH and PS-NH2) for 30 days (F0-E), followed by a depuration period of 21 days (F0-D). In addition, the eggs produced on the last day of exposure were cultured under standard protocols without further exposure for 2 months (F1 fish). The results showed that the alpha diversity or the bacterial community of gut microbiota did not differ among the SMZ + PS, SMZ + PS-COOH, and SMZ + PS-NH2 groups in the F0-E and F1 fish. Interestingly, during the depuration, a clear recovery of gut microbiota (e.g., increases in the alpha diversity, beneficial bacteria abundances and network complexity) was found in the SMZ + PS group, but not for the SMZ + PS-COOH and SMZ + PS-NH2 groups, indicating that PS-COOH and PS-NH2 could prolong the toxic effect of SMZ and hinder the recovery of gut microbiota. Compared to plain PS, lower egestion rates of PS-COOH and PS-NH2 were observed in O. melastigma. In addition, under the simulated fish digest conditions, the SMZ-loaded PS-NH2 was found to desorb more SMZ than the loaded PS and PS-COOH. These results suggested that the surface -COOH and -NH2 groups on PS could influence their egestion efficiency and the adsorption/desorption behavior with SMZ, resulting in a long-lasting SMZ stress in the gut during the depuration phase. Our findings highlight the complexity of the carrier effect and ecological risk of surface-charged nanoplastics and the interactions between nanoplastics and antibiotics in natural environments.


Subject(s)
Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , Sulfamethazine/toxicity , Microplastics , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Anti-Bacterial Agents/toxicity
18.
Environ Sci Pollut Res Int ; 31(9): 14239-14253, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273083

ABSTRACT

In response to antibiotic residues in the water, a novel advanced oxidation technology based on MgO2 was used to remediate sulfamethazine (SMTZ) pollution in aquatic environments. Upon appropriate regulation, the remarkable removal efficiency of SMTZ was observed in a UV/MgO2 system, and the pseudo-first-order reaction constant reached 0.4074 min-1. In addition, the better performance of the UV/MgO2 system in a weak acid environment was discovered. During the removal of SMTZ, the pathways of SMTZ degradation were deduced, including nitration, ring opening, and group loss. In the mineralization exploration, the further removal of residual products of SMTZ by the UV/MgO2 system was visually demonstrated. The qualitative and quantitative researches as well as the roles of reactive species were valuated, which revealed the important role of ·O2-. Common co-existing substances in actual wastewater such as NO3- HA, Cl-, Fe2+, Co2+, and Mn2+ can slightly inhibit the degradation of SMTZ in the UV/MgO2 system. Finally, the capacity of efficient degradation of SMTZ in actual wastewater by the UV/MgO2 system was proved. The results indicated that the innovative UV/MgO2 system was of great practical application prospect in antibiotic residue wastewater remediation.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/chemistry , Magnesium Oxide , Wastewater , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Ultraviolet Rays , Sulfamethazine/chemistry , Sulfanilamide , Oxidation-Reduction , Kinetics , Sulfonamides , Water Purification/methods
19.
Biomed Chromatogr ; 38(2): e5781, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994231

ABSTRACT

Sulfamethazine (SMZ), trimethoprim (TMP) and doxycycline (DOXY) are drugs of choice used in the treatment of intestinal and respiratory infections that affect poultry and swine. The aim of this study was develop and validate a simple, sensitive and fast method for the simultaneous determination of SMZ, TMP and DOXY in veterinary formulations by high-performance liquid chromatography. The separation was performed on a Macherey-Nagel C8 analytical column (4 × 125 mm, 5 µm), with a flow rate of 0.5 ml min-1 and detection at 268, 270 and 350 nm, for SMZ, TMP and DOXY, respectively. All measurements were performed in acetonitrile-water (45:55 v/v; pH 3.0). The analytical curves were linear (r > 0.9997) in the concentration range of 5.0-35.0 µg ml-1 for SMZ, 1.0-7.0 µg ml-1 for TMP and 7.0-13.0 µg ml-1 for DOXY. The method proved to be precise, robust, accurate and selective. In accelerated stability, the sample was analyzed for 6 months, with no major variations observed in organoleptic analysis and pH. Therefore, the developed method was proved to be suitable for routine quality control analyses for the simultaneous determination of SMZ, TMP and DOXY in pharmaceutical formulations.


Subject(s)
Sulfamethazine , Trimethoprim , Animals , Swine , Trimethoprim/analysis , Chromatography, High Pressure Liquid/methods , Sulfamethazine/analysis , Doxycycline , Water
20.
Huan Jing Ke Xue ; 44(9): 5092-5101, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699827

ABSTRACT

The combined pollution of antibiotics adsorption by microplastics has become inevitable in soil ecosystems; moreover, the plant biological effects under combined stress remain unclear. This study used soybean variety Jindou 21 as the material and conducted seed germination test and soil-potted seedling experiment to study the effects of different single and combined treatments of polyethylene (PE) and sulfamethazine (SMZ) on seed germination, seedling growth, photosynthetic parameters, chlorophyll fluorescence parameters, and nitrogen metabolism. The results showed that single PE treatment at low levels promoted soybean seed germination and seedling growth physiology; however, inhibited them at a high level. A lower-level PE treatment[10 mg·L-1 (or mg·kg-1)] could promote soybean seed germination, seedling growth, photosynthesis, and nitrogen metabolism, whereas a higher level PE treatment[100 mg·L-1 and 200 mg·L-1 (or mg·kg-1)] had significant inhibition. The single SMZ treatment had different degrees of inhibition on soybean seed germination and seedling growth physiology, and the inhibition degree increased with the increase in SMZ treatment level. Under the different levels of combined treatments of PE and SMZ, adding the lower level PE treatment could alleviate the inhibition of the single SMZ treatment on soybean, with 10 mg·L-1(or mg·kg-1) PE+1 mg·L-1(or mg·kg-1) SMZ treatment having the best comprehensive mitigation effect, which could increase soybean seed germination potential, germination rate, germination index, vigor index, plant height, root length, shoot and root fresh weight, Pn, Gs, Tr, chlorophyll contents, Fv/Fm, ΦPSⅡ, ETR, qP, and key enzyme activities for nitrogen metabolism such as NR and decrease the average germination time, Ci, NPQ, and NO3--N and NH4+-N contents compared with those in the single SMZ treatment. Adding the higher level PE treatment enhanced the inhibition of SMZ on soybean, and the inhibition degree increased with the increase in SMZ treatment level, in which 200 mg·L-1(or mg·kg-1) PE+50 mg·L-1(or mg·kg-1) SMZ treatment yielded the greatest inhibition. In summary, the lower level PE treatment could alleviate the inhibition of SMZ on soybean seeds and seedlings to a certain extent; however, the higher level PE treatment could produce a synergistic effect with SMZ, thus aggravating the toxic effect of the single stress treatment.


Subject(s)
Polyethylene , Seedlings , Sulfamethazine/toxicity , Germination , Glycine max , Ecosystem , Plastics , Seeds , Chlorophyll , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL