Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 474
Filter
1.
Arch Peru Cardiol Cir Cardiovasc ; 5(3): 176-180, 2024.
Article in Spanish | MEDLINE | ID: mdl-39411020

ABSTRACT

The electrocardiographic sign "Spiked Helmet" (SHS) has been described in critically ill patients and is associated with a high risk of death. We present the case of a young individual with Marfan syndrome, who developed a Takotsubo cardiomyopathy and the electrocardiographic manifestation of SHS, 72 hours after the postoperative period for a ruptured abdominal aorta aneurysm. In this case, the factors that may justify the presentation of this electrocardiographic pattern are the thoraco-abdominal surgical intervention and Takotsubo cardiomyopathy, which together activated the sympathetic system, triggering the clinical-electrocardiographic manifestation.

2.
Animals (Basel) ; 14(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39272355

ABSTRACT

This review provides a comprehensive analysis of the pelvic plexus and its regulation across various mammalian species, including rats, cats, dogs, and pigs. The pelvic and hypogastric nerves play crucial roles in regulating pelvic functions such as micturition, defecation, and erection. The anatomical organization of these nerves varies, forming either well-defined ganglia or complex plexuses. Despite these variations, the neurons within these structures are consistently regulated by key neurotransmitters, norepinephrine and acetylcholine. These neurons also possess receptors for testosterone and prolactin, particularly in rats, indicating the significant role of these hormones in neuronal function and development. Moreover, neuropeptides such as vasoactive intestinal peptide (VIP), substance P, neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), and calcitonin gene-related peptide (CGRP) are co-released with neurotransmitters to modulate pelvic functions. This review highlights the complex interplay between neurotransmitters, neuropeptides, and hormones in regulating pelvic physiology and emphasizes the importance of hormonal regulation in maintaining the functionality and health of the pelvic plexus across different species.

3.
Toxicon ; 250: 108100, 2024 Nov 06.
Article in English | MEDLINE | ID: mdl-39299653

ABSTRACT

Complex Regional Pain Syndrome (CRPS) is characterized by pain, swelling, limited range of motion, skin changes, vasomotor instability, and bone demineralization. This study aims to assess the efficacy of botulinum toxin type A (BoNT-A) in the treatment of CRPS. We conducted a systematic literature review following the PRISMA guidelines, using the PICO strategy (Patient, Intervention, Comparison and Outcome) with the following criteria: P = Patients with CRPS; I = Botulinum toxin; C = Placebo or active drug; and O = Pain relief. Three randomized controlled trials with placebo controls were included, involving a total of 64 patients, 36 of whom received BoNT-A in doses ranging from 40U to 200U. The studies examined both lumbar sympathetic block and local application methods. Botulinum toxin shows promise in alleviating pain associated with CRPS, particularly when used as an adjunct to lumbar sympathetic blockade. However, the limited number of studies and small sample sizes impede reaching definitive conclusions regarding its efficacy and safety. Notably, local applications (intradermal or subcutaneous) require further investigation, as current evidence is insufficient and reports indicate patient discomfort. While preliminary findings suggest potential benefits of BoNT-A in managing CRPS, larger randomized trials are necessary to confirm its efficacy and safety.


Subject(s)
Botulinum Toxins, Type A , Complex Regional Pain Syndromes , Complex Regional Pain Syndromes/drug therapy , Humans , Botulinum Toxins, Type A/therapeutic use , Randomized Controlled Trials as Topic
4.
Eur J Neurosci ; 60(8): 5849-5860, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39235324

ABSTRACT

The paraventricular nucleus of the hypothalamus (PVN) regulates physiological and behavioural responses evoked by stressful stimuli, but the local neurochemical and signalling mechanisms involved are not completely understood. The soluble guanylate cyclase (sGC) within the PVN is implicated in autonomic and cardiovascular control in rodents under resting conditions. However, the involvement of PVN sGC-mediated signalling in stress responses is unknown. Therefore, we investigated the role of sGC within the PVN in cardiovascular, autonomic, neuroendocrine, and local neuronal responses to acute restraint stress in rats. Bilateral microinjection of the selective sGC inhibitor ODQ (1 nmol/100 nl) into the PVN reduced both the increased arterial pressure and the drop in cutaneous tail temperature evoked by restraint stress, while the tachycardia was enhanced. Intra-PVN injection of ODQ did not alter the number of Fos-immunoreactive neurons in either the dorsal cap parvocellular (PaDC), ventromedial (PaV), medial parvocellular (PaMP), or lateral magnocelllular (PaLM) portions of the PVN following acute restraint stress. Local microinjection of ODQ into the PVN did not affect the restraint-induced increases in plasma corticosterone concentration. Taken together, these findings suggest that sGC-mediated signalling in the PVN plays a key role in acute stress-induced pressor responses and sympathetically mediated cutaneous vasoconstriction, whereas the tachycardiac response is inhibited. Absence of an effect of ODQ on corticosterone and PVN neuronal activation in and the PaV and PaMP suggests that PVN sGC is not involved in restraint-evoked hypothalamus-pituitary-adrenal (HPA) axis activation and further indicates that autonomic and neuroendocrine responses are dissociable at the level of the PVN.


Subject(s)
Paraventricular Hypothalamic Nucleus , Restraint, Physical , Stress, Psychological , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Rats , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Soluble Guanylyl Cyclase/metabolism , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Rats, Wistar , Heart Rate/drug effects , Heart Rate/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Guanylate Cyclase/metabolism , Guanylate Cyclase/antagonists & inhibitors
5.
Acta Cardiol ; : 1-10, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39286998

ABSTRACT

Background: Hypertension is a clinical condition that presents an enormous prevalence worldwide. Despite there being gold-standard treatments, several people frequently present sequelae and die. Transcranial direct current stimulation (tDCS) emerges as a cheap, easy-to-use, and portable intervention to modulate the central nervous system and control cardiovascular parameters. Objective: To evaluate the tDCS effects on the hemodynamic and autonomic parameters of hypertensive people. Methods: This systematic review included clinical trials published in databases that used tDCS as an intervention, isolated or associated, in hypertensive people to modulate the hemodynamic and autonomic parameters. We calculated the effect sizes, performed a meta-analysis, and evaluated the risk of bias in the studies. Three different researchers performed all the steps presented in the methods section. Results: Four studies suited the eligibility criteria of this review. Some studies showed that tDCS isolated after one session generated improvements in hemodynamic and autonomic parameters. Despite in meta-analysis, no statistical differences were detected between the groups, there was a tendency to reduce systolic (MD: -0.72 (CI: -1.54; 0.11; p = 0.06) and diastolic blood pressure (MD: -1.23; CI: -3.45; 0.99; p < 0.01), and root mean square of successive differences (MD: 0.73; CI: -0.30; 1.76; p < 0.01). There was no statistical difference after ten tDCS sessions. All the studies presented a low risk of bias. Conclusion: After one session, isolated tDCS might be able to modulate hypertensive people's hemodynamic and autonomic parameters. The anodic stimulation over the primary motor cortex shows signs of being the best target to generate a response.

6.
BMC Neurosci ; 25(1): 37, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174899

ABSTRACT

BACKGROUND: Adipose and muscle tissue wasting outlines the cachectic process during tumor progression. The sympathetic nervous system (SNS) is known to promote tumor progression and research suggests that it might also contribute to cancer-associated cachexia (CAC) energetic expenditure through fat wasting. METHODS: We sympathectomized L5178Y-R tumor-bearing male BALB/c mice by intraperitoneally administering 6-hydroxydopamine to evaluate morphometric, inflammatory, and molecular indicators of CAC and tumor progression. RESULTS: Tumor burden was associated with cachexia indicators, including a 10.5% body mass index (BMI) decrease, 40.19% interscapular, 54% inguinal, and 37.17% visceral adipose tissue loss, a 12% food intake decrease, and significant (p = 0.038 and p = 0.0037) increases in the plasmatic inflammatory cytokines IL-6 and IFN-γ respectively. Sympathectomy of tumor-bearing mice was associated with attenuated BMI and visceral adipose tissue loss, decreased interscapular Ucp-1 gene expression to basal levels, and 2.6-fold reduction in Mmp-9 relative gene expression, as compared with the unsympathectomized mice control group. CONCLUSION: The SNS contributes to CAC-associated morphometric and adipose tissue alterations and promotes tumor progression in a murine model.


Subject(s)
Cachexia , Disease Progression , Mice, Inbred BALB C , Sympathetic Nervous System , Animals , Cachexia/metabolism , Cachexia/pathology , Cachexia/etiology , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , Male , Mice , Uncoupling Protein 1/metabolism , Cell Line, Tumor , Ion Channels/metabolism , Matrix Metalloproteinase 9/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidopamine , Sympathectomy, Chemical , Interleukin-6/metabolism , Body Mass Index , Neoplasms/complications , Neoplasms/pathology , Neoplasms/metabolism
8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000071

ABSTRACT

The Goldblatt model of hypertension (2K-1C) in rats is characterized by renal sympathetic nerve activity (rSNA). We investigated the effects of unilateral renal denervation of the clipped kidney (DNX) on sodium transporters of the unclipped kidneys and the cardiovascular, autonomic, and renal functions in 2K-1C and control (CTR) rats. The mean arterial pressure (MAP) and rSNA were evaluated in experimental groups. Kidney function and NHE3, NCC, ENaCß, and ENaCγ protein expressions were assessed. The glomerular filtration rate (GRF) and renal plasma flow were not changed by DNX, but the urinary (CTR: 0.0042 ± 0.001; 2K-1C: 0.014 ± 0.003; DNX: 0.005 ± 0.0013 mL/min/g renal tissue) and filtration fractions (CTR: 0.29 ± 0.02; 2K-1C: 0.51 ± 0.06; DNX: 0.28 ± 0.04 mL/min/g renal tissue) were normalized. The Na+/H+ exchanger (NHE3) was reduced in 2K-1C, and DNX normalized NHE3 (CTR: 100 ± 6; 2K-1C: 44 ± 14, DNX: 84 ± 13%). Conversely, the Na+/Cl- cotransporter (NCC) was increased in 2K-1C and was reduced by DNX (CTR: 94 ± 6; 2K-1C: 144 ± 8; DNX: 60 ± 15%). In conclusion, DNX in Goldblatt rats reduced blood pressure and proteinuria independently of GRF with a distinct regulation of NHE3 and NCC in unclipped kidneys.


Subject(s)
Kidney , Sodium-Hydrogen Exchanger 3 , Animals , Kidney/innervation , Kidney/metabolism , Rats , Male , Sodium-Hydrogen Exchanger 3/metabolism , Glomerular Filtration Rate , Denervation , Ischemia/metabolism , Blood Pressure , Rats, Wistar , Hypertension/metabolism , Epithelial Sodium Channels/metabolism , Disease Models, Animal , Sodium-Hydrogen Exchangers/metabolism
9.
Metabolism ; 157: 155940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878857

ABSTRACT

BACKGROUND AND AIM: Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS: Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION: Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.


Subject(s)
Cold Temperature , Cyclic AMP Response Element-Binding Protein , Gluconeogenesis , Liver , Norepinephrine , Transcription Factors , Animals , Gluconeogenesis/physiology , Liver/metabolism , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Norepinephrine/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/physiology , Hepatocytes/metabolism
10.
Clin Auton Res ; 34(3): 363-374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38878143

ABSTRACT

PURPOSE: Central and peripheral chemoreceptors are hypersensitized in patients with heart failure with reduced ejection fraction. Whether this autonomic alteration occurs in patients with heart failure with preserved ejection fraction (HFpEF) remains little known. We test the hypothesis that the central and peripheral chemoreflex control of muscle sympathetic nerve activity (MSNA) is altered in HFpEF. METHODS: Patients aged 55-80 years with symptoms of heart failure, body mass index ≤ 35 kg/m2, left ventricular ejection fraction > 50%, left atrial volume index > 34 mL/m2, left ventricular early diastolic filling velocity and early diastolic tissue velocity of mitral annulus ratio (E/e' index) ≥ 13, and BNP levels > 35 pg/mL were included in the study (HFpEF, n = 9). Patients without heart failure with preserved ejection fraction (non-HFpEF, n = 9), aged-paired, were also included in the study. Peripheral chemoreceptors stimulation (10% O2 and 90% N2, with CO2 titrated) and central chemoreceptors stimulation (7% CO2 and 93% O2) were conducted for 3 min. MSNA was evaluated by microneurography technique, and forearm blood flow (FBF) by venous occlusion plethysmography. RESULTS: During hypoxia, MSNA responses were greater (p < 0.001) and FBF responses were lower in patients with HFpEF (p = 0.006). Likewise, MSNA responses during hypercapnia were higher (p < 0.001) and forearm vascular conductance (FVC) levels were lower (p = 0.030) in patients with HFpEF. CONCLUSIONS: Peripheral and central chemoreflex controls of MSNA are hypersensitized in patients with HFpEF, which seems to contribute to the increase in MSNA in these patients. In addition, peripheral and central chemoreceptors stimulation in patients with HFpEF causes muscle vasoconstriction.


Subject(s)
Chemoreceptor Cells , Heart Failure , Stroke Volume , Humans , Aged , Male , Female , Heart Failure/physiopathology , Middle Aged , Stroke Volume/physiology , Chemoreceptor Cells/physiology , Aged, 80 and over , Sympathetic Nervous System/physiopathology , Muscle, Skeletal/physiopathology
11.
Cardiooncology ; 10(1): 32, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812020

ABSTRACT

BACKGROUND: Cardiotoxicity is a recognized complication in breast cancer (BC) patients undergoing chemotherapy with anthracyclines with or without trastuzumab. However, the prognostic value of heart rate variability (HRV) indexes for early cardiotoxicity development remains unknown. METHODS: Fifty BC patients underwent TTE assessment before and three months after chemotherapy. HRV indexes were obtained from continuous electrocardiograms in supine position with spontaneous breathing, active standing, and supine position with controlled breathing. The magnitude of change (Δ) between supine-standing and supine-controlled breathing was calculated. Variables were compared using t-test or ANOVA. Cardiotoxicity predictive value was assessed by ROC curve analysis. A p value of < 0.05 was considered significant. RESULTS: TTE revealed reduced left atrial conduit strain in the cardiotoxicity group. Mean heart rate increased during all maneuvers at follow-up, with no differences in HRV indexes between patients with or without cardiotoxicity. However, a lower Δ in supine-controlled breathing of several HRV indexes predicted early cardiotoxicity identified by echocardiography (e.g. SDNN ≤ -8.44 ms: Sensitivity = 75%, Specificity = 69%). CONCLUSIONS: BC patients treated with chemotherapy maintain cardiac autonomic responses to physiological stimuli after 3 months of chemotherapy. However, a lower Δ during active standing and controlled breathing before chemotherapy may predict early cardiotoxicity.

12.
Physiol Behav ; 281: 114575, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692384

ABSTRACT

Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective ß2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a ß2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.


Subject(s)
Clenbuterol , Disease Models, Animal , Fibromyalgia , Hyperalgesia , Muscular Atrophy , Sympathetic Nervous System , Animals , Female , Fibromyalgia/pathology , Fibromyalgia/physiopathology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Hyperalgesia/physiopathology , Hyperalgesia/pathology , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/pathology , Clenbuterol/pharmacology , Rats , Carrageenan/toxicity , Rats, Sprague-Dawley , Pain/pathology , Pain/physiopathology , Epinephrine , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Catecholamines/metabolism , Adrenergic beta-Agonists/pharmacology
14.
Rev. Nac. (Itauguá) ; 16(2)May-Aug. 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559130

ABSTRACT

El estudio de la regularidad de la Frecuencia Cardiaca, a través del Holter de 24 horas se hace desde la década de los años 60 y es bastante efectivo. Sin embargo, desde los años noventa comenzaron a efectuarse estudios cortos de Holter en pacientes sospechados de tener fallas autonómicas de control de la frecuencia cardiaca, especialmente en pacientes con comorbilidades tales como Hipertensión, Diabetes Mellitus, Aterosclerosis etc. De aquí la importancia de realizar un test de Holter de diez minutos, divididos en dos tiempos de 5 minutos, primero en decúbito dorsal y luego en bipedestación, especialmente en pacientes de más de cincuenta años o con comorbilidades presentes. Los resultados se presentan luego en gráficos de Poincare, que incluye el programa operativo del dispositivo, que permite un vistazo de la elipse con sus dos ejes, que representan las acciones simpáticas y parasimpáticas sobre la frecuencia cardiaca. Una variabilidad anormal de la frecuencia cardiaca debe ser luego estudiada más profundamente a fin de reafirmar el diagnóstico y ulteriores pasos en el tratamiento.


The variability of Cardiac Frequency is a valuable monitor of the autonomic function and is currently used as tool for study of changes of regularity through Holter 24 hours. From nighties, several researchers have been oriented to stablish relationship between VCF and autonomic failure, especially in patients with comorbidities, such as Hypertension, Diabetes Mellitus, atherosclerosis etc. Actually is well known that a lost or VCF or a minor variability, even in short traces of Holter in 10 minutes, means an autonomic failure, of baroreflex and quimioreflex resources. Hence, the importance of performing test of ten minutes Holter, five in decubitus position and five in standing, to patients of more than fifty years old, or less if comorbidities are presents, to design a Poincare diagram, which is special to indicate in quick view the prevalence of Sympathetic o Vagal action on cardiac frequency; that conduces to a more deep study of Autonomic failure, such tilt test, extended holter of 24 hours, and others medicals images resources.

15.
Curr Cardiol Rep ; 26(6): 635-641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656586

ABSTRACT

PURPOSE OF REVIEW: More than a century since its discovery, the pathogenesis of Chagas heart disease (CHD) remains incompletely understood. The role of derangements in the autonomic control of the heart in triggering malignant arrhythmia before the appearance of contractile ventricular impairment was reviewed. RECENT FINDINGS: Although previous investigations had demonstrated the anatomical and functional consequences of parasympathetic dysautonomia upon the heart rate control, only recently, coronary microvascular disturbances and sympathetic denervation at the ventricular level have been reported in patients and experimental models of CHD, exploring with nuclear medicine methods their impact on the progression of myocardial dysfunction and cardiac arrhythmias. More important than parasympathetic impaired sinus node regulation, recent evidence indicates that myocardial sympathetic denervation associated with coronary microvascular derangements is causally related to myocardial injury and arrhythmia in CHD. Additionally, 123I-MIBG imaging is a promising tool for risk stratification of progression of ventricular dysfunction and sudden death.


Subject(s)
Chagas Cardiomyopathy , Sympathectomy , Humans , Sympathectomy/methods , Chagas Cardiomyopathy/physiopathology , Chagas Cardiomyopathy/surgery , Chagas Cardiomyopathy/complications , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Heart/innervation , Heart/diagnostic imaging , 3-Iodobenzylguanidine , Sympathetic Nervous System/physiopathology
16.
Clin Anat ; 37(8): 886-899, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38469730

ABSTRACT

Current advances in the management of the autonomic nervous system in various cardiovascular diseases, and in treatments for pain or sympathetic disturbances in the head, neck, or upper limbs, necessitate a thorough understanding of the anatomy of the cervicothoracic sympathetic trunk. Our objective was to enhance our understanding of the origin and distribution of communicating branches and visceral cervicothoracic sympathetic nerves in human fetuses. This was achieved through a comprehensive topographic systematization of the branching patterns observed in the cervical and upper thoracic ganglia, along with the distribution of communicating branches to each cervical spinal nerve. We conducted detailed sub-macroscopic dissections of the cervical and thoracic regions in 20 human fetuses (40 sides). The superior and cervicothoracic ganglia were identified as the cervical sympathetic ganglia that provided the most communicating branches on both sides. The middle and accessory cervical ganglia contributed the fewest branches, with no significant differences between the right and left sides. The cervicothoracic ganglion supplied sympathetic branches to the greatest number of spinal nerves, spanning from C5 to T2. The distribution of communicating branches to spinal nerves was non-uniform. Notably, C3, C4, and C5 received the fewest branches, and more than half of the specimens showed no sympathetic connections. C1 and C2 received sympathetic connections exclusively from the superior ganglion. Spinal nerves that received more branches often did so from multiple ganglia. The vertebral nerve provided deep communicating branches primarily to C6, with lesser contributions to C7, C5, and C8. The vagus nerve stood out as the cranial nerve with the most direct sympathetic connections. The autonomic branching pattern and connections of the cervicothoracic sympathetic trunk are significantly variable in the fetus. A comprehensive understanding of the anatomy of the cervical and upper thoracic sympathetic trunk and its branches is valuable during autonomic interventions and neuromodulation. This knowledge is particularly relevant for addressing various autonomic cardiac diseases and for treating pain and vascular dysfunction in the head, neck, and upper limbs.


Subject(s)
Ganglia, Sympathetic , Humans , Ganglia, Sympathetic/anatomy & histology , Fetus/anatomy & histology , Sympathetic Nervous System/anatomy & histology , Cervical Vertebrae/anatomy & histology , Spinal Nerves/anatomy & histology , Cadaver , Female , Clinical Relevance
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6551-6562, 2024 09.
Article in English | MEDLINE | ID: mdl-38457039

ABSTRACT

Sepsis/septic shock activates the sympathetic nervous system (SNS) to deal with the infection stress. However, an imbalanced or maladaptive response due to excessive or uncontrolled activation characterizes autonomic dysfunction. Our hypothesis was that reducing this excessive activation of the autonomic nervous system would impact positively in sepsis. Using ganglionic blockers as a pharmacological approach, the main aim of the present report was to assess the role of ganglionic transmission in the vascular dysfunction associated with sepsis.Sepsis was induced in rats by cecal ligation and puncture (CLP). One hour after CLP surgery, rats were treated subcutaneously with hexamethonium (15 mg/kg; ganglionic blocker), pentolinium (5 mg/kg; a blocker with a higher selectivity for sympathetic ganglia compared to hexamethonium), or vehicle (PBS). Basal blood pressure and the response to adrenergic agonists were evaluated at 6 and 24 h after CLP surgery. Reactivity to vasoconstrictors, nitric oxide (NO) synthase 2 (NOS-2) expression, IL-1 and TNF plasma levels, and density of α1 adrenergic receptors were evaluated in the aorta 24 h after CLP.Septic shock resulted in hypotension and hyporesponsiveness to norepinephrine and phenylephrine, increased plasma cytokine levels and NOS-2 expression in the aorta, and decreased α1 receptor density in the same vessel. Pentolinium but not hexamethonium recovered responsiveness and α1 adrenergic receptor density in the aorta. Both blockers normalized the in vivo response to vasoconstrictors, and reduced plasma IL-1 and NOx levels and NOS-2 expression in the aorta.Blockade of ganglionic sympathetic transmission reduced the vascular dysfunction in experimental sepsis. This beneficial effect seems to be, at least in part, due to the preservation of α1 adrenergic receptor density and to reduced NOS-2 expression and may lead to adjuvant ways to treat human sepsis.


Subject(s)
Ganglia, Sympathetic , Shock, Septic , Animals , Shock, Septic/physiopathology , Shock, Septic/drug therapy , Shock, Septic/metabolism , Male , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/physiopathology , Ganglia, Sympathetic/metabolism , Ganglionic Blockers/pharmacology , Rats, Wistar , Nitric Oxide Synthase Type II/metabolism , Rats , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-1/drug effects , Blood Pressure/drug effects , Tumor Necrosis Factor-alpha/metabolism , Vasoconstrictor Agents/pharmacology
18.
Neuroimmunomodulation ; 31(1): 78-88, 2024.
Article in English | MEDLINE | ID: mdl-38527434

ABSTRACT

BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.


Subject(s)
Brain , Chagas Disease , Thymus Gland , Humans , Chagas Disease/immunology , Chagas Disease/physiopathology , Animals , Brain/immunology , Thymus Gland/immunology , Thymus Gland/physiology , Trypanosoma cruzi/physiology , Trypanosoma cruzi/immunology , Hypothalamo-Hypophyseal System/immunology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Neuroimmunomodulation/physiology , Neuroimmunomodulation/immunology , Pituitary-Adrenal System/immunology , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolism
19.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473838

ABSTRACT

The occurrence, inhibitory modulation, and trophic effects of GABA have been identified in the peripheral sympathetic nervous system. We have demonstrated that GABA and acetylcholine (ACh) may colocalize in the same axonal varicosities or be segregated into separate ones in the rat superior cervical ganglia (SCG). Neurotransmitter segregation varies with age and the presence of neurotrophic factors. Here, we explored age-dependent changes in the occurrence and segregation of GABA and ACh in rats ranging from 2 weeks old (wo) to 12 months old or older. Using immunohistochemistry, we characterized the expression of L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine transporter (VAChT) in the rat SCG at 2, 4, 8, 12 wo and 12 months old or older. Our findings revealed that GAD67 was greater at 2 wo compared with the other ages, whereas VAChT levels were greater at 4 wo than at 12 wo and 12 months old or older. The segregation of these neurotransmitters was more pronounced at 2 and 4 wo. We observed a caudo-rostral gradient of segregation degree at 8 and 12 wo. Data point out that the occurrence and segregation of GABA and ACh exhibit developmental adaptative changes throughout the lifetime of rats. We hypothesize that during the early postnatal period, the increase in GABA and GABA-ACh segregation promotes the release of GABA alone which might play a role in trophic actions.


Subject(s)
Acetylcholine , Superior Cervical Ganglion , Rats , Animals , Acetylcholine/metabolism , Axons/metabolism , gamma-Aminobutyric Acid/metabolism
20.
Arch Cardiol Mex ; 94(3): 366-372, 2024 02 15.
Article in Spanish | MEDLINE | ID: mdl-38359455

ABSTRACT

This review provides an overview of the efficacy and safety of renal sympathetic denervation as a therapeutic approach for resistant hypertension. While the initial enthusiasm was sparked by the results of early clinical trials, it was dampened by the findings of the Symplicity HTN-3 study. However, recent advances in catheter technology and more refined patient selection criteria have yielded more promising results. Subsequent studies, such as SPYRAL HTN-OFF MED and RADIANCE II, demonstrated significant reductions in blood pressure, even in patients with mild to moderate hypertension. Despite the lack of robust data on major clinical outcomes, investigations into the time in therapeutic range for patients undergoing renal sympathetic denervation suggested potential cardiovascular benefits. Nevertheless, further research is needed to thoroughly understand the long-term impact, assess cost-effectiveness, and accurately identify which patient subgroups may derive the greatest benefits from this therapy.


Esta revisión brinda una síntesis de la eficacia y la seguridad de la denervación simpática renal como enfoque terapéutico para la hipertensión resistente. A pesar del entusiasmo inicial generado por los resultados de los primeros ensayos clínicos, la eficacia de esta terapia se vio comprometida por los hallazgos negativos del estudio Symplicity HTN-3. Sin embargo, recientes avances en la tecnología de catéteres y una refinada selección de los pacientes han proporcionado resultados más prometedores. Estudios posteriores, como SPYRAL HTN-OFF MED y RADIANCE II, demostraron reducciones significativas en la presión arterial, incluso en pacientes con hipertensión de leve a moderada. A pesar de la falta de datos sólidos sobre desenlaces clínicos importantes, las investigaciones sobre el tiempo en rango terapéutico de los pacientes sometidos a denervación simpática renal sugirieron posibles beneficios cardiovasculares. No obstante, se requiere una mayor investigación para comprender a fondo el impacto a largo plazo, evaluar la relación costo-efectividad y determinar con precisión qué subgrupos de pacientes podrían obtener los mayores beneficios de esta terapia.


Subject(s)
Hypertension , Kidney , Sympathectomy , Humans , Sympathectomy/methods , Hypertension/surgery , Kidney/innervation
SELECTION OF CITATIONS
SEARCH DETAIL