Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Front Cell Dev Biol ; 12: 1442052, 2024.
Article in English | MEDLINE | ID: mdl-39129784

ABSTRACT

PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.

2.
Mol Microbiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654540

ABSTRACT

Entamoeba histolytica causes invasive amoebiasis, an important neglected tropical disease with a significant global health impact. The pathogenicity and survival of E. histolytica and its reptilian equivalent, Entamoeba invadens, relies on its ability to exhibit efficient motility, evade host immune responses, and exploit host resources, all of which are governed by the actin cytoskeleton remodeling. Our study demonstrates the early origin and the regulatory role of TALE homeobox protein EiHbox1 in actin-related cellular processes. Several genes involved in different biological pathways, including actin dynamics are differentially expressed in EiHbox1 silenced cells. EiHbox1 silenced parasites showed disrupted F-actin organization and loss of cellular polarity. EiHbox1's presence in the anterior region of migrating cells further suggests its involvement in maintaining cellular polarity. Loss of polarized morphology of EiHbox1 silenced parasites leads to altered motility from fast, directionally persistent, and highly chemotactic to slow, random, and less chemotactic, which subsequently leads to defective aggregation during encystation. EiHbox1 knockdown also resulted in a significant reduction in phagocytic capacity and poor capping response. These findings highlight the importance of EiHbox1 of E. invadens in governing cellular processes crucial for their survival, pathogenicity, and evasion of the host immune system.

3.
J Exp Bot ; 75(11): 3220-3232, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38527334

ABSTRACT

The first TALE homeodomain transcription factor gene to be described in plants was maize knotted1 (kn1). Dominant mutations in kn1 disrupt leaf development, with abnormal knots of tissue forming in the leaf blade. kn1 was found to be expressed in the shoot meristem but not in a peripheral region that gives rise to leaves. Furthermore, KN1 and closely related proteins were excluded from initiating and developing leaves. These findings were a prelude to a large body of work wherein TALE homeodomain proteins have been identified as vital regulators of meristem homeostasis and organ development in plants. KN1 homologues are widely represented across land plant taxa. Thus, studying the regulation and mechanistic action of this gene class has allowed investigations into the evolution of diverse plant morphologies. This review will focus on the function of TALE homeodomain transcription factors in leaf development in eudicots. Here, we discuss how TALE homeodomain proteins contribute to a spectrum of leaf forms, from the simple leaves of Arabidopsis thaliana to the compound leaves of Cardamine hirsuta and species beyond the Brassicaceae.


Subject(s)
Homeodomain Proteins , Plant Leaves , Plant Proteins , Transcription Factors , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Meristem/genetics , Meristem/growth & development , Meristem/metabolism
4.
Elife ; 122024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386003

ABSTRACT

Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.


Subject(s)
Homeodomain Proteins , Nervous System Physiological Phenomena , Transcription Factors , Animals , Mice , Gene Expression Regulation , Mechanoreceptors , Sensory Receptor Cells , Transcription Factors/genetics , Homeodomain Proteins/genetics
5.
Mol Microbiol ; 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37424153

ABSTRACT

It is interesting to identify factors involved in the regulation of the encystation of Entamoeba histolytica that differentiate trophozoites into cysts. Evolutionarily conserved three amino acid loop extension (TALE) homeodomain proteins act as transcription factors and execute a variety of functions that are essential for life. A TALE homeodomain (EhHbox) protein-encoding gene has been identified in E. histolytica (Eh) that is highly upregulated during heat shock, glucose, and serum starvation. Its ortholog, EiHbox1, a putative homeobox protein in E. invadens (Ei), is also highly upregulated during the early hours of encystation, glucose starvation, and heat shock. They belong to the PBX family of TALE homeobox proteins and have conserved residues in the homeodomain that are essential for DNA binding. Both are localized in the nucleus during encystation and under different stress conditions. The electrophoretic mobility shift assay confirmed that the recombinant GST-EhHbox binds to the reported TGACAG and TGATTGAT motifs. Down-regulation of EiHbox1 by gene silencing reduced Chitin synthase, Jacob, and increased Jessie gene expression, resulting in defective cysts and decreased encystation efficiency and viability. Overall, our results suggest that the TALE homeobox family has been conserved during evolution and acts as a transcription factor to control the differentiation of Entamoeba by regulating the key encystation-induced genes.

6.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35137058

ABSTRACT

Hox transcription factors are conserved regulators of neuronal subtype specification on the anteroposterior axis in animals, with disruption of Hox gene expression leading to homeotic transformations of neuronal identities. We have taken advantage of an unusual mutation in the Caenorhabditis elegans Hox gene lin-39, lin-39(ccc16), which transforms neuronal fates in the C. elegans male ventral nerve cord in a manner that depends on a second Hox gene, mab-5. We have performed a genetic analysis centered around this homeotic allele of lin-39 in conjunction with reporters for neuronal target genes and protein interaction assays to explore how LIN-39 and MAB-5 exert both flexibility and specificity in target regulation. We identify cis-regulatory modules in neuronal reporters that are both region-specific and Hox-responsive. Using these reporters of neuronal subtype, we also find that the lin-39(ccc16) mutation disrupts neuronal fates specifically in the region where lin-39 and mab-5 are coexpressed, and that the protein encoded by lin-39(ccc16) is active only in the absence of mab-5. Moreover, the fates of neurons typical to the region of lin-39-mab-5 coexpression depend on both Hox genes. Our genetic analysis, along with evidence from Bimolecular Fluorescence Complementation protein interaction assays, supports a model in which LIN-39 and MAB-5 act at an array of cis-regulatory modules to cooperatively activate and to individually activate or repress neuronal gene expression, resulting in regionally specific neuronal fates.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Homeodomain Proteins , Transcription Factors , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Male , Neurons/metabolism , Transcription Factors/metabolism
7.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: mdl-34579806

ABSTRACT

KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.


Subject(s)
Biological Evolution , Germ Cells/physiology , Plants/metabolism , Transcription Factors/metabolism , Diploidy
8.
Elife ; 102021 09 17.
Article in English | MEDLINE | ID: mdl-34533136

ABSTRACT

Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.


Subject(s)
Diploidy , Germ Cells, Plant , Marchantia/genetics , Genes, Plant , Haploidy , Phylogeny
9.
FASEB J ; 33(12): 13893-13904, 2019 12.
Article in English | MEDLINE | ID: mdl-31618597

ABSTRACT

Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor ß (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.


Subject(s)
Endothelial Cells/metabolism , Homeodomain Proteins/metabolism , Neovascularization, Pathologic/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Gene Expression Regulation/physiology , Mice
10.
Hum Mutat ; 40(8): 1071-1076, 2019 08.
Article in English | MEDLINE | ID: mdl-31058389

ABSTRACT

Human sex-determination is a poorly understood genetic process, where gonad development depends on a cell fate decision that occurs in a somatic cell to commit to Sertoli (male) or granulosa (female) cells. A lack of testis-determination in the human results in 46,XY gonadal dysgenesis. A minority of these cases is explained by mutations in genes known to be involved in sex-determination. Here, we identified a de novo missense mutation, p.Arg235Gln in the highly conserved TALE homeodomain of the transcription factor Pre-B-Cell Leukemia Transcription Factor 1 (PBX1) in a child with 46,XY gonadal dysgenesis and radiocubital synostosis. This mutation, within the nuclear localization signal of the protein, modifies the ability of the PBX1 protein to localize to the nucleus. The mutation abolishes the physical interaction of PBX1 with two proteins known to be involved in testis-determination, CBX2 and EMX2. These results provide a mechanism whereby this mutation results specifically in the absence of testis-determination.


Subject(s)
Gonadal Dysgenesis, 46,XY/genetics , Mutation, Missense , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Synostosis/genetics , Female , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Models, Molecular , Nuclear Localization Signals , Polycomb Repressive Complex 1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/chemistry , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Sex Determination Processes , Transcription Factors/metabolism
11.
Elife ; 82019 01 15.
Article in English | MEDLINE | ID: mdl-30644818

ABSTRACT

Three amino acid loop extension homeodomain transcription factors (TALE HD TFs) act as life cycle regulators in green algae and land plants. In mosses these regulators are required for the deployment of the sporophyte developmental program. We demonstrate that mutations in either of two TALE HD TF genes, OUROBOROS or SAMSARA, in the brown alga Ectocarpus result in conversion of the sporophyte generation into a gametophyte. The OUROBOROS and SAMSARA proteins heterodimerise in a similar manner to TALE HD TF life cycle regulators in the green lineage. These observations demonstrate that TALE-HD-TF-based life cycle regulation systems have an extremely ancient origin, and that these systems have been independently recruited to regulate sporophyte developmental programs in at least two different complex multicellular eukaryotic supergroups, Archaeplastida and Chromalveolata.


Subject(s)
Embryophyta/growth & development , Embryophyta/metabolism , Homeodomain Proteins/metabolism , Phaeophyceae/growth & development , Phaeophyceae/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Embryophyta/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Mutation/genetics , Phaeophyceae/genetics , Phenotype , Protein Binding , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
12.
Development ; 145(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29437830

ABSTRACT

Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.


Subject(s)
Body Patterning/genetics , Epithelial-Mesenchymal Transition/genetics , Face/embryology , Morphogenesis/genetics , Nose/embryology , Pre-B-Cell Leukemia Transcription Factor 1/physiology , Snail Family Transcription Factors/genetics , Animals , Apoptosis/genetics , Cells, Cultured , Cleft Lip/embryology , Cleft Lip/genetics , Cleft Palate/embryology , Cleft Palate/genetics , Embryo, Mammalian , Face/abnormalities , Gene Expression Regulation, Developmental , Lip/embryology , Mice , Mice, Transgenic , Palate/embryology , Pre-B-Cell Leukemia Transcription Factor 1/genetics
13.
Front Cell Dev Biol ; 5: 9, 2017.
Article in English | MEDLINE | ID: mdl-28261581

ABSTRACT

Pioneer factors are proteins that can recognize their target sites in barely accessible chromatin and initiate a cascade of events that allows for later transcriptional activation of the respective genes. Pioneer factors are therefore particularly well-suited to initiate cell fate changes. To date, only a small number of pioneer factors have been identified and studied in depth, such as FOXD3/FOXA1, OCT4, or SOX2. Interestingly, several recent studies reported that the PBC transcription factor PBX1 can access transcriptionally inactive genomic loci. Here, we summarize the evidence linking PBX1 with transcriptional pioneer functions, suggest potential mechanisms involved and discuss open questions to be resolved.

14.
Annu Rev Genet ; 50: 133-154, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27617970

ABSTRACT

The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.


Subject(s)
Biological Evolution , Plants/genetics , Bryophyta/genetics , Chlorophyta/genetics , Diploidy , Eukaryota , Fungi/genetics , Haploidy , Homeodomain Proteins/genetics , Magnoliopsida/genetics , Phaeophyceae/genetics , Phylogeny , Rhodophyta/genetics
15.
Development ; 143(13): 2281-91, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27226325

ABSTRACT

TALE-homeodomain proteins function as components of heteromeric complexes that contain one member each of the PBC and MEIS/PREP subclasses. We recently showed that MEIS2 cooperates with the neurogenic transcription factor PAX6 in the control of adult subventricular zone (SVZ) neurogenesis in rodents. Expression of the PBC protein PBX1 in the SVZ has been reported, but its functional role(s) has not been investigated. Using a genetic loss-of-function mouse model, we now show that Pbx1 is an early regulator of SVZ neurogenesis. Targeted deletion of Pbx1 by retroviral transduction of Cre recombinase into Pbx2-deficient SVZ stem and progenitor cells carrying floxed alleles of Pbx1 significantly reduced the production of neurons and increased the generation of oligodendrocytes. Loss of Pbx1 expression in neuronally committed neuroblasts in the rostral migratory stream in a Pbx2 null background, by contrast, severely compromised cell survival. By chromatin immunoprecipitation from endogenous tissues or isolated cells, we further detected PBX1 binding to known regulatory regions of the neuron-specific genes Dcx and Th days or even weeks before the respective genes are expressed during the normal program of SVZ neurogenesis, suggesting that PBX1 might act as a priming factor to mark these genes for subsequent activation. Collectively, our results establish that PBX1 regulates adult neural cell fate determination in a manner beyond that of its heterodimerization partner MEIS2.


Subject(s)
Aging/metabolism , Homeodomain Proteins/metabolism , Lateral Ventricles/metabolism , Neurogenesis , Transcription Factors/metabolism , Animals , Base Sequence , Cell Differentiation , Cell Lineage , Cell Movement , Cell Survival , Cells, Cultured , Doublecortin Domain Proteins , Doublecortin Protein , Enhancer Elements, Genetic/genetics , Gene Deletion , Gene Expression Regulation, Developmental , Gene Targeting , Homeodomain Proteins/genetics , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neurogenesis/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Olfactory Bulb/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Pre-B-Cell Leukemia Transcription Factor 1 , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/genetics , Tyrosine 3-Monooxygenase/metabolism
16.
Development ; 141(1): 28-38, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24284204

ABSTRACT

Meis homeodomain transcription factors control cell proliferation, cell fate specification and differentiation in development and disease. Previous studies have largely focused on Meis contribution to the development of non-neuronal tissues. By contrast, Meis function in the brain is not well understood. Here, we provide evidence for a dual role of the Meis family protein Meis2 in adult olfactory bulb (OB) neurogenesis. Meis2 is strongly expressed in neuroblasts of the subventricular zone (SVZ) and rostral migratory stream (RMS) and in some of the OB interneurons that are continuously replaced during adult life. Targeted manipulations with retroviral vectors expressing function-blocking forms or with small interfering RNAs demonstrated that Meis activity is cell-autonomously required for the acquisition of a general neuronal fate by SVZ-derived progenitors in vivo and in vitro. Additionally, Meis2 activity in the RMS is important for the generation of dopaminergic periglomerular neurons in the OB. Chromatin immunoprecipitation identified doublecortin and tyrosine hydroxylase as direct Meis targets in newly generated neurons and the OB, respectively. Furthermore, biochemical analyses revealed a previously unrecognized complex of Meis2 with Pax6 and Dlx2, two transcription factors involved in OB neurogenesis. The full pro-neurogenic activity of Pax6 in SVZ derived neural stem and progenitor cells requires the presence of Meis. Collectively, these results show that Meis2 cooperates with Pax6 in generic neurogenesis and dopaminergic fate specification in the adult SVZ-OB system.


Subject(s)
Dopaminergic Neurons/cytology , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Neurogenesis/physiology , Olfactory Bulb/embryology , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Animals , Base Sequence , Cell Proliferation , Dopaminergic Neurons/metabolism , Doublecortin Domain Proteins , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Molecular Sequence Data , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neuropeptides/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , PAX6 Transcription Factor , RNA Interference , RNA, Small Interfering/genetics , Transcription Factors/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL